Commit 8dcf9728 by Elvar Liiv

a

parent f147a242
Showing with 31027 additions and 0 deletions
This source diff could not be displayed because it is too large. You can view the blob instead.
/**
******************************************************************************
* @file stm32f4xx_hal_tim_ex.c
* @author MCD Application Team
* @brief TIM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Timer extension peripheral:
* + Time Hall Sensor Interface Initialization
* + Time Hall Sensor Interface Start
* + Time Complementary signal bread and dead time configuration
* + Time Master and Slave synchronization configuration
@verbatim
==============================================================================
##### TIMER Extended features #####
==============================================================================
[..]
The Timer Extension features include:
(#) Complementary outputs with programmable dead-time for :
(++) Input Capture
(++) Output Compare
(++) PWM generation (Edge and Center-aligned Mode)
(++) One-pulse mode output
(#) Synchronization circuit to control the timer with external signals and to
interconnect several timers together.
(#) Break input to put the timer output signals in reset state or in a known state.
(#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
positioning purposes
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
depending from feature used :
(++) Complementary Output Compare : HAL_TIM_OC_MspInit()
(++) Complementary PWM generation : HAL_TIM_PWM_MspInit()
(++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit()
(++) Hall Sensor output : HAL_TIM_HallSensor_MspInit()
(#) Initialize the TIM low level resources :
(##) Enable the TIM interface clock using __TIMx_CLK_ENABLE();
(##) TIM pins configuration
(+++) Enable the clock for the TIM GPIOs using the following function:
__GPIOx_CLK_ENABLE();
(+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
(#) The external Clock can be configured, if needed (the default clock is the
internal clock from the APBx), using the following function:
HAL_TIM_ConfigClockSource, the clock configuration should be done before
any start function.
(#) Configure the TIM in the desired functioning mode using one of the
initialization function of this driver:
(++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the
Timer Hall Sensor Interface and the commutation event with the corresponding
Interrupt and DMA request if needed (Note that One Timer is used to interface
with the Hall sensor Interface and another Timer should be used to use
the commutation event).
(#) Activate the TIM peripheral using one of the start functions:
(++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT()
(++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
(++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
(++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup TIMEx TIMEx
* @brief TIM HAL module driver
* @{
*/
#ifdef HAL_TIM_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup TIMEx_Private_Functions
* @{
*/
/* Private function prototypes -----------------------------------------------*/
static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Functions TIM Exported Functions
* @{
*/
/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions
* @brief Timer Hall Sensor functions
*
@verbatim
==============================================================================
##### Timer Hall Sensor functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure TIM HAL Sensor.
(+) De-initialize TIM HAL Sensor.
(+) Start the Hall Sensor Interface.
(+) Stop the Hall Sensor Interface.
(+) Start the Hall Sensor Interface and enable interrupts.
(+) Stop the Hall Sensor Interface and disable interrupts.
(+) Start the Hall Sensor Interface and enable DMA transfers.
(+) Stop the Hall Sensor Interface and disable DMA transfers.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Hall Sensor Interface and create the associated handle.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param sConfig TIM Hall Sensor configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig)
{
TIM_OC_InitTypeDef OC_Config;
/* Check the TIM handle allocation */
if(htim == NULL)
{
return HAL_ERROR;
}
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
/* Set the TIM state */
htim->State= HAL_TIM_STATE_BUSY;
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIMEx_HallSensor_MspInit(htim);
/* Configure the Time base in the Encoder Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
/* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */
TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
/* Reset the IC1PSC Bits */
htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
/* Set the IC1PSC value */
htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
/* Enable the Hall sensor interface (XOR function of the three inputs) */
htim->Instance->CR2 |= TIM_CR2_TI1S;
/* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= TIM_TS_TI1F_ED;
/* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
/* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
OC_Config.OCMode = TIM_OCMODE_PWM2;
OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
OC_Config.Pulse = sConfig->Commutation_Delay;
TIM_OC2_SetConfig(htim->Instance, &OC_Config);
/* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to 101 */
htim->Instance->CR2 &= ~TIM_CR2_MMS;
htim->Instance->CR2 |= TIM_TRGO_OC2REF;
/* Initialize the TIM state*/
htim->State= HAL_TIM_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the TIM Hall Sensor interface
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
htim->State = HAL_TIM_STATE_BUSY;
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIMEx_HallSensor_MspDeInit(htim);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Initializes the TIM Hall Sensor MSP.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Hall Sensor MSP.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Hall Sensor Interface.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
/* Enable the Input Capture channels 1
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall sensor Interface.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1, 2 and 3
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in interrupt mode.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
/* Enable the capture compare Interrupts 1 event */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the Input Capture channels 1
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall Sensor Interface in interrupt mode.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts event */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in DMA mode.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param pData The destination Buffer address.
* @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
if((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if((htim->State == HAL_TIM_STATE_READY))
{
if(((uint32_t)pData == 0U) && (Length > 0))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
/* Enable the Input Capture channels 1
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
/* Set the DMA Input Capture 1 Callback */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream for Capture 1*/
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
/* Enable the capture compare 1 Interrupt */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Hall Sensor Interface in DMA mode.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
{
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1
(in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 event */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions
* @brief Timer Complementary Output Compare functions
*
@verbatim
==============================================================================
##### Timer Complementary Output Compare functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary Output Compare/PWM.
(+) Stop the Complementary Output Compare/PWM.
(+) Start the Complementary Output Compare/PWM and enable interrupts.
(+) Stop the Complementary Output Compare/PWM and disable interrupts.
(+) Start the Complementary Output Compare/PWM and enable DMA transfers.
(+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
@endverbatim
* @{
*/
/**
* @brief Starts the TIM Output Compare signal generation on the complementary
* output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation on the complementary
* output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
}
break;
default:
break;
}
/* Enable the TIM Break interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
}
break;
default:
break;
}
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the TIM Break interrupt (only if no more channel is active) */
if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode
* on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
if((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if((htim->State == HAL_TIM_STATE_READY))
{
if(((uint32_t)pData == 0U) && (Length > 0))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
}
break;
default:
break;
}
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode
* on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
}
break;
default:
break;
}
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions
* @brief Timer Complementary PWM functions
*
@verbatim
==============================================================================
##### Timer Complementary PWM functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary PWM.
(+) Stop the Complementary PWM.
(+) Start the Complementary PWM and enable interrupts.
(+) Stop the Complementary PWM and disable interrupts.
(+) Start the Complementary PWM and enable DMA transfers.
(+) Stop the Complementary PWM and disable DMA transfers.
(+) Start the Complementary Input Capture measurement.
(+) Stop the Complementary Input Capture.
(+) Start the Complementary Input Capture and enable interrupts.
(+) Stop the Complementary Input Capture and disable interrupts.
(+) Start the Complementary Input Capture and enable DMA transfers.
(+) Stop the Complementary Input Capture and disable DMA transfers.
(+) Start the Complementary One Pulse generation.
(+) Stop the Complementary One Pulse.
(+) Start the Complementary One Pulse and enable interrupts.
(+) Stop the Complementary One Pulse and disable interrupts.
@endverbatim
* @{
*/
/**
* @brief Starts the PWM signal generation on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation on the complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the PWM signal generation in interrupt mode on the
* complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
}
break;
default:
break;
}
/* Enable the TIM Break interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the PWM signal generation in interrupt mode on the
* complementary output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
}
break;
default:
break;
}
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the TIM Break interrupt (only if no more channel is active) */
if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM PWM signal generation in DMA mode on the
* complementary output
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @param pData The source Buffer address.
* @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
if((htim->State == HAL_TIM_STATE_BUSY))
{
return HAL_BUSY;
}
else if((htim->State == HAL_TIM_STATE_READY))
{
if(((uint32_t)pData == 0U) && (Length > 0))
{
return HAL_ERROR;
}
else
{
htim->State = HAL_TIM_STATE_BUSY;
}
}
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Set the DMA Period elapsed callback */
htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
/* Enable the DMA Stream */
HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
}
break;
default:
break;
}
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM PWM signal generation in DMA mode on the complementary
* output
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Channel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
switch (Channel)
{
case TIM_CHANNEL_1:
{
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
}
break;
case TIM_CHANNEL_2:
{
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
}
break;
case TIM_CHANNEL_3:
{
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
}
break;
case TIM_CHANNEL_4:
{
/* Disable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
}
break;
default:
break;
}
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Change the htim state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions
* @brief Timer Complementary One Pulse functions
*
@verbatim
==============================================================================
##### Timer Complementary One Pulse functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Start the Complementary One Pulse generation.
(+) Stop the Complementary One Pulse.
(+) Start the Complementary One Pulse and enable interrupts.
(+) Stop the Complementary One Pulse and disable interrupts.
@endverbatim
* @{
*/
/**
* @brief Starts the TIM One Pulse signal generation on the complementary
* output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param OutputChannel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Enable the complementary One Pulse output */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation on the complementary
* output.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param OutputChannel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Disable the complementary One Pulse output */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param OutputChannel TIM Channel to be enabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
/* Enable the complementary One Pulse output */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
/* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param OutputChannel TIM Channel to be disabled.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
{
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
/* Disable the complementary One Pulse output */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
/* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
(+) Configure External Clock source.
(+) Configure Complementary channels, break features and dead time.
(+) Configure Master and the Slave synchronization.
(+) Configure the commutation event in case of use of the Hall sensor interface.
(+) Configure the DMA Burst Mode.
@endverbatim
* @{
*/
/**
* @brief Configure the TIM commutation event sequence.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor.
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
* @param CommutationSource the Commutation Event source.
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
__HAL_LOCK(htim);
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configure the TIM commutation event sequence with interrupt.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor.
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
* @param CommutationSource the Commutation Event source.
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
__HAL_LOCK(htim);
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
/* Enable the Commutation Interrupt Request */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configure the TIM commutation event sequence with DMA.
* @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
* @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor.
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
* @param CommutationSource the Commutation Event source.
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource)
{
/* Check the parameters */
assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
__HAL_LOCK(htim);
if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
(InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
{
/* Select the Input trigger */
htim->Instance->SMCR &= ~TIM_SMCR_TS;
htim->Instance->SMCR |= InputTrigger;
}
/* Select the Capture Compare preload feature */
htim->Instance->CR2 |= TIM_CR2_CCPC;
/* Select the Commutation event source */
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
/* Enable the Commutation DMA Request */
/* Set the DMA Commutation Callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
/* Enable the Commutation DMA Request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the TIM in master mode.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
* contains the selected trigger output (TRGO) and the Master/Slave
* mode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig)
{
/* Check the parameters */
assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
/* Reset the MMS Bits */
htim->Instance->CR2 &= ~TIM_CR2_MMS;
/* Select the TRGO source */
htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger;
/* Reset the MSM Bit */
htim->Instance->SMCR &= ~TIM_SMCR_MSM;
/* Set or Reset the MSM Bit */
htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode;
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
* and the AOE(automatic output enable).
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfig_TypeDef structure that
* contains the BDTR Register configuration information for the TIM peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
TIM_BreakDeadTimeConfigTypeDef * sBreakDeadTimeConfig)
{
uint32_t tmpbdtr = 0U;
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
/* Check input state */
__HAL_LOCK(htim);
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
the OSSI State, the dead time value and the Automatic Output Enable Bit */
/* Set the BDTR bits */
MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, sBreakDeadTimeConfig->AutomaticOutput);
/* Set TIMx_BDTR */
htim->Instance->BDTR = tmpbdtr;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @brief Configures the TIM2, TIM5 and TIM11 Remapping input capabilities.
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @param Remap specifies the TIM input remapping source.
* This parameter can be one of the following values:
* @arg TIM_TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default)
* @arg TIM_TIM2_ETH_PTP: TIM2 ITR1 input is connected to ETH PTP trigger output.
* @arg TIM_TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF.
* @arg TIM_TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF.
* @arg TIM_TIM5_GPIO: TIM5 CH4 input is connected to dedicated Timer pin(default)
* @arg TIM_TIM5_LSI: TIM5 CH4 input is connected to LSI clock.
* @arg TIM_TIM5_LSE: TIM5 CH4 input is connected to LSE clock.
* @arg TIM_TIM5_RTC: TIM5 CH4 input is connected to RTC Output event.
* @arg TIM_TIM11_GPIO: TIM11 CH4 input is connected to dedicated Timer pin(default)
* @arg TIM_TIM11_HSE: TIM11 CH4 input is connected to HSE_RTC clock
* (HSE divided by a programmable prescaler)
* @arg TIM_TIM9_TIM3_TRGO: TIM9 ITR1 input is connected to TIM3 Trigger output(default)
* @arg TIM_TIM9_LPTIM: TIM9 ITR1 input is connected to LPTIM.
* @arg TIM_TIM5_TIM3_TRGO: TIM5 ITR1 input is connected to TIM3 Trigger output(default)
* @arg TIM_TIM5_LPTIM: TIM5 ITR1 input is connected to LPTIM.
* @arg TIM_TIM1_TIM3_TRGO: TIM1 ITR2 input is connected to TIM3 Trigger output(default)
* @arg TIM_TIM1_LPTIM: TIM1 ITR2 input is connected to LPTIM.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
{
__HAL_LOCK(htim);
/* Check parameters */
assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
assert_param(IS_TIM_REMAP(Remap));
#if defined(LPTIM_OR_TIM1_ITR2_RMP)
if ((Remap == TIM_TIM9_TIM3_TRGO)|| (Remap == TIM_TIM9_LPTIM)||(Remap ==TIM_TIM5_TIM3_TRGO)||\
(Remap == TIM_TIM5_LPTIM)||(Remap == TIM_TIM1_TIM3_TRGO)|| (Remap == TIM_TIM1_LPTIM))
{
__HAL_RCC_LPTIM1_CLK_ENABLE();
LPTIM1->OR = (Remap& 0xEFFFFFFFU);
}
else
{
/* Set the Timer remapping configuration */
htim->Instance->OR = Remap;
}
#else
/* Set the Timer remapping configuration */
htim->Instance->OR = Remap;
#endif
htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions
* @brief Extension Callbacks functions
*
@verbatim
==============================================================================
##### Extension Callbacks functions #####
==============================================================================
[..]
This section provides Extension TIM callback functions:
(+) Timer Commutation callback
(+) Timer Break callback
@endverbatim
* @{
*/
/**
* @brief Hall commutation changed callback in non blocking mode
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval None
*/
__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_TIMEx_CommutationCallback could be implemented in the user file
*/
}
/**
* @brief Hall Break detection callback in non blocking mode
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval None
*/
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_TIMEx_BreakCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions
* @brief Extension Peripheral State functions
*
@verbatim
==============================================================================
##### Extension Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the TIM Hall Sensor interface state
* @param htim pointer to a TIM_HandleTypeDef structure that contains
* the configuration information for TIM module.
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
{
return htim->State;
}
/**
* @}
*/
/**
* @brief TIM DMA Commutation callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
{
TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
htim->State= HAL_TIM_STATE_READY;
HAL_TIMEx_CommutationCallback(htim);
}
/**
* @}
*/
/**
* @brief Enables or disables the TIM Capture Compare Channel xN.
* @param TIMx to select the TIM peripheral
* @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_Channel_1: TIM Channel 1
* @arg TIM_Channel_2: TIM Channel 2
* @arg TIM_Channel_3: TIM Channel 3
* @param ChannelNState specifies the TIM Channel CCxNE bit new state.
* This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
* @retval None
*/
static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState)
{
uint32_t tmp = 0U;
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(TIMx));
assert_param(IS_TIM_COMPLEMENTARY_CHANNELS(Channel));
tmp = TIM_CCER_CC1NE << Channel;
/* Reset the CCxNE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxNE Bit */
TIMx->CCER |= (uint32_t)(ChannelNState << Channel);
}
/**
* @}
*/
#endif /* HAL_TIM_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* @file stm32f4xx_hal_uart.c
* @author MCD Application Team
* @brief UART HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State and Errors functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The UART HAL driver can be used as follows:
(#) Declare a UART_HandleTypeDef handle structure.
(#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
(##) Enable the USARTx interface clock.
(##) UART pins configuration:
(+++) Enable the clock for the UART GPIOs.
(+++) Configure these UART pins as alternate function pull-up.
(##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
and HAL_UART_Receive_IT() APIs):
(+++) Configure the USARTx interrupt priority.
(+++) Enable the NVIC USART IRQ handle.
(##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
and HAL_UART_Receive_DMA() APIs):
(+++) Declare a DMA handle structure for the Tx/Rx stream.
(+++) Enable the DMAx interface clock.
(+++) Configure the declared DMA handle structure with the required
Tx/Rx parameters.
(+++) Configure the DMA Tx/Rx Stream.
(+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the DMA Tx/Rx Stream.
(#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
flow control and Mode(Receiver/Transmitter) in the Init structure.
(#) For the UART asynchronous mode, initialize the UART registers by calling
the HAL_UART_Init() API.
(#) For the UART Half duplex mode, initialize the UART registers by calling
the HAL_HalfDuplex_Init() API.
(#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
(#) For the Multi-Processor mode, initialize the UART registers by calling
the HAL_MultiProcessor_Init() API.
[..]
(@) The specific UART interrupts (Transmission complete interrupt,
RXNE interrupt and Error Interrupts) will be managed using the macros
__HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
and receive process.
[..]
(@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
HAL_UART_MspInit() API.
[..]
Three operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Send an amount of data in blocking mode using HAL_UART_Transmit()
(+) Receive an amount of data in blocking mode using HAL_UART_Receive()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
(+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_TxCpltCallback
(+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
(+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_RxCpltCallback
(+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_UART_ErrorCallback
*** DMA mode IO operation ***
==============================
[..]
(+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
(+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
(+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_TxCpltCallback
(+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
(+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
(+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_UART_RxCpltCallback
(+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_UART_ErrorCallback
(+) Pause the DMA Transfer using HAL_UART_DMAPause()
(+) Resume the DMA Transfer using HAL_UART_DMAResume()
(+) Stop the DMA Transfer using HAL_UART_DMAStop()
*** UART HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in UART HAL driver.
(+) __HAL_UART_ENABLE: Enable the UART peripheral
(+) __HAL_UART_DISABLE: Disable the UART peripheral
(+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
(+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
(+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
(+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
(+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
[..]
(@) You can refer to the UART HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup UART UART
* @brief HAL UART module driver
* @{
*/
#ifdef HAL_UART_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup UART_Private_Constants
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup UART_Private_Functions UART Private Functions
* @{
*/
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void UART_DMAError(DMA_HandleTypeDef *hdma);
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout);
static void UART_SetConfig (UART_HandleTypeDef *huart);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup UART_Exported_Functions UART Exported Functions
* @{
*/
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
in asynchronous mode.
(+) For the asynchronous mode only these parameters can be configured:
(++) Baud Rate
(++) Word Length
(++) Stop Bit
(++) Parity: If the parity is enabled, then the MSB bit of the data written
in the data register is transmitted but is changed by the parity bit.
Depending on the frame length defined by the M bit (8-bits or 9-bits),
please refer to Reference manual for possible UART frame formats.
(++) Hardware flow control
(++) Receiver/transmitter modes
(++) Over Sampling Method
[..]
The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor
configuration procedures (details for the procedures are available in reference manual (RM0329)).
@endverbatim
* @{
*/
/**
* @brief Initializes the UART mode according to the specified parameters in
* the UART_InitTypeDef and create the associated handle.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
{
/* Check the UART handle allocation */
if(huart == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
{
/* The hardware flow control is available only for USART1, USART2, USART3 and USART6 */
assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
}
else
{
assert_param(IS_UART_INSTANCE(huart->Instance));
}
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
if(huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_UART_MspInit(huart);
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
UART_SetConfig(huart);
/* In asynchronous mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
/* Enable the peripheral */
__HAL_UART_ENABLE(huart);
/* Initialize the UART state */
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState= HAL_UART_STATE_READY;
huart->RxState= HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Initializes the half-duplex mode according to the specified
* parameters in the UART_InitTypeDef and create the associated handle.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
{
/* Check the UART handle allocation */
if(huart == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
if(huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_UART_MspInit(huart);
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
UART_SetConfig(huart);
/* In half-duplex mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.*/
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
/* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
/* Enable the peripheral */
__HAL_UART_ENABLE(huart);
/* Initialize the UART state*/
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState= HAL_UART_STATE_READY;
huart->RxState= HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Initializes the LIN mode according to the specified
* parameters in the UART_InitTypeDef and create the associated handle.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param BreakDetectLength Specifies the LIN break detection length.
* This parameter can be one of the following values:
* @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
* @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
* @retval HAL status
*/
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
{
/* Check the UART handle allocation */
if(huart == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
if(huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_UART_MspInit(huart);
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
UART_SetConfig(huart);
/* In LIN mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.*/
CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
/* Enable the LIN mode by setting the LINEN bit in the CR2 register */
SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
/* Set the USART LIN Break detection length. */
CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
SET_BIT(huart->Instance->CR2, BreakDetectLength);
/* Enable the peripheral */
__HAL_UART_ENABLE(huart);
/* Initialize the UART state*/
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState= HAL_UART_STATE_READY;
huart->RxState= HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Initializes the Multi-Processor mode according to the specified
* parameters in the UART_InitTypeDef and create the associated handle.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param Address USART address
* @param WakeUpMethod specifies the USART wake-up method.
* This parameter can be one of the following values:
* @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
* @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
{
/* Check the UART handle allocation */
if(huart == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
assert_param(IS_UART_ADDRESS(Address));
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
if(huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_UART_MspInit(huart);
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
UART_SetConfig(huart);
/* In Multi-Processor mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN, HDSEL and IREN bits in the USART_CR3 register */
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
/* Clear the USART address */
CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
/* Set the USART address node */
SET_BIT(huart->Instance->CR2, Address);
/* Set the wake up method by setting the WAKE bit in the CR1 register */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
SET_BIT(huart->Instance->CR1, WakeUpMethod);
/* Enable the peripheral */
__HAL_UART_ENABLE(huart);
/* Initialize the UART state */
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState= HAL_UART_STATE_READY;
huart->RxState= HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the UART peripheral.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
{
/* Check the UART handle allocation */
if(huart == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
huart->gState = HAL_UART_STATE_BUSY;
/* DeInit the low level hardware */
HAL_UART_MspDeInit(huart);
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState = HAL_UART_STATE_RESET;
huart->RxState = HAL_UART_STATE_RESET;
/* Process Lock */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief UART MSP Init.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_MspInit could be implemented in the user file
*/
}
/**
* @brief UART MSP DeInit.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup UART_Exported_Functions_Group2 IO operation functions
* @brief UART Transmit and Receive functions
*
@verbatim
==============================================================================
##### IO operation functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to manage the UART asynchronous
and Half duplex data transfers.
(#) There are two modes of transfer:
(++) Blocking mode: The communication is performed in polling mode.
The HAL status of all data processing is returned by the same function
after finishing transfer.
(++) Non blocking mode: The communication is performed using Interrupts
or DMA, these APIs return the HAL status.
The end of the data processing will be indicated through the
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
will be executed respectively at the end of the transmit or receive process.
The HAL_UART_ErrorCallback() user callback will be executed when
a communication error is detected.
(#) Blocking mode APIs are:
(++) HAL_UART_Transmit()
(++) HAL_UART_Receive()
(#) Non Blocking mode APIs with Interrupt are:
(++) HAL_UART_Transmit_IT()
(++) HAL_UART_Receive_IT()
(++) HAL_UART_IRQHandler()
(#) Non Blocking mode functions with DMA are:
(++) HAL_UART_Transmit_DMA()
(++) HAL_UART_Receive_DMA()
(#) A set of Transfer Complete Callbacks are provided in non blocking mode:
(++) HAL_UART_TxCpltCallback()
(++) HAL_UART_RxCpltCallback()
(++) HAL_UART_ErrorCallback()
[..]
(@) In the Half duplex communication, it is forbidden to run the transmit
and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX
can't be useful.
@endverbatim
* @{
*/
/**
* @brief Sends an amount of data in blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint16_t* tmp;
uint32_t tickstart = 0U;
/* Check that a Tx process is not already ongoing */
if(huart->gState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState = HAL_UART_STATE_BUSY_TX;
/* Init tickstart for timeout managment */
tickstart = HAL_GetTick();
huart->TxXferSize = Size;
huart->TxXferCount = Size;
while(huart->TxXferCount > 0U)
{
huart->TxXferCount--;
if(huart->Init.WordLength == UART_WORDLENGTH_9B)
{
if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
tmp = (uint16_t*) pData;
huart->Instance->DR = (*tmp & (uint16_t)0x01FF);
if(huart->Init.Parity == UART_PARITY_NONE)
{
pData +=2U;
}
else
{
pData +=1U;
}
}
else
{
if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
huart->Instance->DR = (*pData++ & (uint8_t)0xFF);
}
}
if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* At end of Tx process, restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives an amount of data in blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint16_t* tmp;
uint32_t tickstart = 0U;
/* Check that a Rx process is not already ongoing */
if(huart->RxState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->RxState = HAL_UART_STATE_BUSY_RX;
/* Init tickstart for timeout managment */
tickstart = HAL_GetTick();
huart->RxXferSize = Size;
huart->RxXferCount = Size;
/* Check the remain data to be received */
while(huart->RxXferCount > 0U)
{
huart->RxXferCount--;
if(huart->Init.WordLength == UART_WORDLENGTH_9B)
{
if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
tmp = (uint16_t*) pData;
if(huart->Init.Parity == UART_PARITY_NONE)
{
*tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
pData +=2U;
}
else
{
*tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
pData +=1U;
}
}
else
{
if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
if(huart->Init.Parity == UART_PARITY_NONE)
{
*pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
}
else
{
*pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
}
}
}
/* At end of Rx process, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sends an amount of data in non blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
/* Check that a Tx process is not already ongoing */
if(huart->gState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->pTxBuffPtr = pData;
huart->TxXferSize = Size;
huart->TxXferCount = Size;
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState = HAL_UART_STATE_BUSY_TX;
/* Process Unlocked */
__HAL_UNLOCK(huart);
/* Enable the UART Transmit data register empty Interrupt */
SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives an amount of data in non blocking mode
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
/* Check that a Rx process is not already ongoing */
if(huart->RxState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->pRxBuffPtr = pData;
huart->RxXferSize = Size;
huart->RxXferCount = Size;
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->RxState = HAL_UART_STATE_BUSY_RX;
/* Process Unlocked */
__HAL_UNLOCK(huart);
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Enable the UART Parity Error and Data Register not empty Interrupts */
SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Sends an amount of data in non blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
uint32_t *tmp;
/* Check that a Tx process is not already ongoing */
if(huart->gState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->pTxBuffPtr = pData;
huart->TxXferSize = Size;
huart->TxXferCount = Size;
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->gState = HAL_UART_STATE_BUSY_TX;
/* Set the UART DMA transfer complete callback */
huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
/* Set the UART DMA Half transfer complete callback */
huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
/* Set the DMA error callback */
huart->hdmatx->XferErrorCallback = UART_DMAError;
/* Set the DMA abort callback */
huart->hdmatx->XferAbortCallback = NULL;
/* Enable the UART transmit DMA Stream */
tmp = (uint32_t*)&pData;
HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->DR, Size);
/* Clear the TC flag in the SR register by writing 0 to it */
__HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
/* Process Unlocked */
__HAL_UNLOCK(huart);
/* Enable the DMA transfer for transmit request by setting the DMAT bit
in the UART CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives an amount of data in non blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @note When the UART parity is enabled (PCE = 1) the data received contain the parity bit.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
uint32_t *tmp;
/* Check that a Rx process is not already ongoing */
if(huart->RxState == HAL_UART_STATE_READY)
{
if((pData == NULL ) || (Size == 0))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(huart);
huart->pRxBuffPtr = pData;
huart->RxXferSize = Size;
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->RxState = HAL_UART_STATE_BUSY_RX;
/* Set the UART DMA transfer complete callback */
huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
/* Set the UART DMA Half transfer complete callback */
huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
/* Set the DMA error callback */
huart->hdmarx->XferErrorCallback = UART_DMAError;
/* Set the DMA abort callback */
huart->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA Stream */
tmp = (uint32_t*)&pData;
HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t*)tmp, Size);
/* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
__HAL_UART_CLEAR_OREFLAG(huart);
/* Process Unlocked */
__HAL_UNLOCK(huart);
/* Enable the UART Parity Error Interrupt */
SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Enable the DMA transfer for the receiver request by setting the DMAR bit
in the UART CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Pauses the DMA Transfer.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
{
uint32_t dmarequest = 0x00U;
/* Process Locked */
__HAL_LOCK(huart);
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
{
/* Disable the UART DMA Tx request */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
}
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
{
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Disable the UART DMA Rx request */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
}
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Resumes the DMA Transfer.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
{
/* Process Locked */
__HAL_LOCK(huart);
if(huart->gState == HAL_UART_STATE_BUSY_TX)
{
/* Enable the UART DMA Tx request */
SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
}
if(huart->RxState == HAL_UART_STATE_BUSY_RX)
{
/* Clear the Overrun flag before resuming the Rx transfer*/
__HAL_UART_CLEAR_OREFLAG(huart);
/* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Enable the UART DMA Rx request */
SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
}
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Stops the DMA Transfer.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
{
uint32_t dmarequest = 0x00U;
/* The Lock is not implemented on this API to allow the user application
to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
*/
/* Stop UART DMA Tx request if ongoing */
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Abort the UART DMA Tx channel */
if(huart->hdmatx != NULL)
{
HAL_DMA_Abort(huart->hdmatx);
}
UART_EndTxTransfer(huart);
}
/* Stop UART DMA Rx request if ongoing */
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel */
if(huart->hdmarx != NULL)
{
HAL_DMA_Abort(huart->hdmarx);
}
UART_EndRxTransfer(huart);
}
return HAL_OK;
}
/**
* @brief Abort ongoing transfers (blocking mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
* - Set handle State to READY
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
{
/* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Disable the UART DMA Tx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */
if(huart->hdmatx != NULL)
{
/* Set the UART DMA Abort callback to Null.
No call back execution at end of DMA abort procedure */
huart->hdmatx->XferAbortCallback = NULL;
HAL_DMA_Abort(huart->hdmatx);
}
}
/* Disable the UART DMA Rx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */
if(huart->hdmarx != NULL)
{
/* Set the UART DMA Abort callback to Null.
No call back execution at end of DMA abort procedure */
huart->hdmarx->XferAbortCallback = NULL;
HAL_DMA_Abort(huart->hdmarx);
}
}
/* Reset Tx and Rx transfer counters */
huart->TxXferCount = 0x00U;
huart->RxXferCount = 0x00U;
/* Reset ErrorCode */
huart->ErrorCode = HAL_UART_ERROR_NONE;
/* Restore huart->RxState and huart->gState to Ready */
huart->RxState = HAL_UART_STATE_READY;
huart->gState = HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Abort ongoing Transmit transfer (blocking mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
* - Set handle State to READY
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
{
/* Disable TXEIE and TCIE interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
/* Disable the UART DMA Tx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
if(huart->hdmatx != NULL)
{
/* Set the UART DMA Abort callback to Null.
No call back execution at end of DMA abort procedure */
huart->hdmatx->XferAbortCallback = NULL;
HAL_DMA_Abort(huart->hdmatx);
}
}
/* Reset Tx transfer counter */
huart->TxXferCount = 0x00U;
/* Restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Abort ongoing Receive transfer (blocking mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
* - Set handle State to READY
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
{
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Disable the UART DMA Rx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
if(huart->hdmarx != NULL)
{
/* Set the UART DMA Abort callback to Null.
No call back execution at end of DMA abort procedure */
huart->hdmarx->XferAbortCallback = NULL;
HAL_DMA_Abort(huart->hdmarx);
}
}
/* Reset Rx transfer counter */
huart->RxXferCount = 0x00U;
/* Restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
return HAL_OK;
}
/**
* @brief Abort ongoing transfers (Interrupt mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
* - Set handle State to READY
* - At abort completion, call user abort complete callback
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
* considered as completed only when user abort complete callback is executed (not when exiting function).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
{
uint32_t AbortCplt = 0x01U;
/* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
before any call to DMA Abort functions */
/* DMA Tx Handle is valid */
if(huart->hdmatx != NULL)
{
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
Otherwise, set it to NULL */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
{
huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
}
else
{
huart->hdmatx->XferAbortCallback = NULL;
}
}
/* DMA Rx Handle is valid */
if(huart->hdmarx != NULL)
{
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
Otherwise, set it to NULL */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
}
else
{
huart->hdmarx->XferAbortCallback = NULL;
}
}
/* Disable the UART DMA Tx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
{
/* Disable DMA Tx at UART level */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
if(huart->hdmatx != NULL)
{
/* UART Tx DMA Abort callback has already been initialised :
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
/* Abort DMA TX */
if(HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
{
huart->hdmatx->XferAbortCallback = NULL;
}
else
{
AbortCplt = 0x00U;
}
}
}
/* Disable the UART DMA Rx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
if(huart->hdmarx != NULL)
{
/* UART Rx DMA Abort callback has already been initialised :
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
/* Abort DMA RX */
if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
{
huart->hdmarx->XferAbortCallback = NULL;
AbortCplt = 0x01U;
}
else
{
AbortCplt = 0x00U;
}
}
}
/* if no DMA abort complete callback execution is required => call user Abort Complete callback */
if(AbortCplt == 0x01U)
{
/* Reset Tx and Rx transfer counters */
huart->TxXferCount = 0x00U;
huart->RxXferCount = 0x00U;
/* Reset ErrorCode */
huart->ErrorCode = HAL_UART_ERROR_NONE;
/* Restore huart->gState and huart->RxState to Ready */
huart->gState = HAL_UART_STATE_READY;
huart->RxState = HAL_UART_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
HAL_UART_AbortCpltCallback(huart);
}
return HAL_OK;
}
/**
* @brief Abort ongoing Transmit transfer (Interrupt mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
* - Set handle State to READY
* - At abort completion, call user abort complete callback
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
* considered as completed only when user abort complete callback is executed (not when exiting function).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
{
/* Disable TXEIE and TCIE interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
/* Disable the UART DMA Tx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
if(huart->hdmatx != NULL)
{
/* Set the UART DMA Abort callback :
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
/* Abort DMA TX */
if(HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
{
/* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
huart->hdmatx->XferAbortCallback(huart->hdmatx);
}
}
else
{
/* Reset Tx transfer counter */
huart->TxXferCount = 0x00U;
/* Restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
HAL_UART_AbortTransmitCpltCallback(huart);
}
}
else
{
/* Reset Tx transfer counter */
huart->TxXferCount = 0x00U;
/* Restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
HAL_UART_AbortTransmitCpltCallback(huart);
}
return HAL_OK;
}
/**
* @brief Abort ongoing Receive transfer (Interrupt mode).
* @param huart UART handle.
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable PPP Interrupts
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
* - Set handle State to READY
* - At abort completion, call user abort complete callback
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
* considered as completed only when user abort complete callback is executed (not when exiting function).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
{
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Disable the UART DMA Rx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
if(huart->hdmarx != NULL)
{
/* Set the UART DMA Abort callback :
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
/* Abort DMA RX */
if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
{
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
huart->hdmarx->XferAbortCallback(huart->hdmarx);
}
}
else
{
/* Reset Rx transfer counter */
huart->RxXferCount = 0x00U;
/* Restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
HAL_UART_AbortReceiveCpltCallback(huart);
}
}
else
{
/* Reset Rx transfer counter */
huart->RxXferCount = 0x00U;
/* Restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
HAL_UART_AbortReceiveCpltCallback(huart);
}
return HAL_OK;
}
/**
* @brief This function handles UART interrupt request.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
{
uint32_t isrflags = READ_REG(huart->Instance->SR);
uint32_t cr1its = READ_REG(huart->Instance->CR1);
uint32_t cr3its = READ_REG(huart->Instance->CR3);
uint32_t errorflags = 0x00U;
uint32_t dmarequest = 0x00U;
/* If no error occurs */
errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
if(errorflags == RESET)
{
/* UART in mode Receiver -------------------------------------------------*/
if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
{
UART_Receive_IT(huart);
return;
}
}
/* If some errors occur */
if((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
{
/* UART parity error interrupt occurred ----------------------------------*/
if(((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
{
huart->ErrorCode |= HAL_UART_ERROR_PE;
}
/* UART noise error interrupt occurred -----------------------------------*/
if(((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
{
huart->ErrorCode |= HAL_UART_ERROR_NE;
}
/* UART frame error interrupt occurred -----------------------------------*/
if(((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
{
huart->ErrorCode |= HAL_UART_ERROR_FE;
}
/* UART Over-Run interrupt occurred --------------------------------------*/
if(((isrflags & USART_SR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
{
huart->ErrorCode |= HAL_UART_ERROR_ORE;
}
/* Call UART Error Call back function if need be --------------------------*/
if(huart->ErrorCode != HAL_UART_ERROR_NONE)
{
/* UART in mode Receiver -----------------------------------------------*/
if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
{
UART_Receive_IT(huart);
}
/* If Overrun error occurs, or if any error occurs in DMA mode reception,
consider error as blocking */
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
if(((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
{
/* Blocking error : transfer is aborted
Set the UART state ready to be able to start again the process,
Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
UART_EndRxTransfer(huart);
/* Disable the UART DMA Rx request if enabled */
if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
{
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* Abort the UART DMA Rx channel */
if(huart->hdmarx != NULL)
{
/* Set the UART DMA Abort callback :
will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
{
/* Call Directly XferAbortCallback function in case of error */
huart->hdmarx->XferAbortCallback(huart->hdmarx);
}
}
else
{
/* Call user error callback */
HAL_UART_ErrorCallback(huart);
}
}
else
{
/* Call user error callback */
HAL_UART_ErrorCallback(huart);
}
}
else
{
/* Non Blocking error : transfer could go on.
Error is notified to user through user error callback */
HAL_UART_ErrorCallback(huart);
huart->ErrorCode = HAL_UART_ERROR_NONE;
}
}
return;
} /* End if some error occurs */
/* UART in mode Transmitter ------------------------------------------------*/
if(((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
{
UART_Transmit_IT(huart);
return;
}
/* UART in mode Transmitter end --------------------------------------------*/
if(((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
{
UART_EndTransmit_IT(huart);
return;
}
}
/**
* @brief Tx Transfer completed callbacks.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callbacks.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callbacks.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callbacks.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief UART error callbacks.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief UART Abort Complete callback.
* @param huart UART handle.
* @retval None
*/
__weak void HAL_UART_AbortCpltCallback (UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_UART_AbortCpltCallback can be implemented in the user file.
*/
}
/**
* @brief UART Abort Complete callback.
* @param huart UART handle.
* @retval None
*/
__weak void HAL_UART_AbortTransmitCpltCallback (UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
*/
}
/**
* @brief UART Abort Receive Complete callback.
* @param huart UART handle.
* @retval None
*/
__weak void HAL_UART_AbortReceiveCpltCallback (UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
* @brief UART control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the UART:
(+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
(+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
(+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
@endverbatim
* @{
*/
/**
* @brief Transmits break characters.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
{
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/* Send break characters */
SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Enters the UART in mute mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
{
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/* Enable the USART mute mode by setting the RWU bit in the CR1 register */
SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Exits the UART mute mode: wake up software.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
{
/* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Enables the UART transmitter and disables the UART receiver.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
{
uint32_t tmpreg = 0x00U;
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/*-------------------------- USART CR1 Configuration -----------------------*/
tmpreg = huart->Instance->CR1;
/* Clear TE and RE bits */
tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
/* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
tmpreg |= (uint32_t)USART_CR1_TE;
/* Write to USART CR1 */
WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Enables the UART receiver and disables the UART transmitter.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
{
uint32_t tmpreg = 0x00U;
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/*-------------------------- USART CR1 Configuration -----------------------*/
tmpreg = huart->Instance->CR1;
/* Clear TE and RE bits */
tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
/* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
tmpreg |= (uint32_t)USART_CR1_RE;
/* Write to USART CR1 */
WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
huart->gState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
* @brief UART State and Errors functions
*
@verbatim
==============================================================================
##### Peripheral State and Errors functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to return the State of
UART communication process, return Peripheral Errors occurred during communication
process
(+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
(+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
@endverbatim
* @{
*/
/**
* @brief Returns the UART state.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL state
*/
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
{
uint32_t temp1= 0x00U, temp2 = 0x00U;
temp1 = huart->gState;
temp2 = huart->RxState;
return (HAL_UART_StateTypeDef)(temp1 | temp2);
}
/**
* @brief Return the UART error code
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART.
* @retval UART Error Code
*/
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
{
return huart->ErrorCode;
}
/**
* @}
*/
/**
* @brief DMA UART transmit process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* DMA Normal mode*/
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
{
huart->TxXferCount = 0U;
/* Disable the DMA transfer for transmit request by setting the DMAT bit
in the UART CR3 register */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
/* Enable the UART Transmit Complete Interrupt */
SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
}
/* DMA Circular mode */
else
{
HAL_UART_TxCpltCallback(huart);
}
}
/**
* @brief DMA UART transmit process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_UART_TxHalfCpltCallback(huart);
}
/**
* @brief DMA UART receive process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* DMA Normal mode*/
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
{
huart->RxXferCount = 0U;
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Disable the DMA transfer for the receiver request by setting the DMAR bit
in the UART CR3 register */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
/* At end of Rx process, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
}
HAL_UART_RxCpltCallback(huart);
}
/**
* @brief DMA UART receive process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_UART_RxHalfCpltCallback(huart);
}
/**
* @brief DMA UART communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void UART_DMAError(DMA_HandleTypeDef *hdma)
{
uint32_t dmarequest = 0x00U;
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Stop UART DMA Tx request if ongoing */
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
{
huart->TxXferCount = 0U;
UART_EndTxTransfer(huart);
}
/* Stop UART DMA Rx request if ongoing */
dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
{
huart->RxXferCount = 0U;
UART_EndRxTransfer(huart);
}
huart->ErrorCode |= HAL_UART_ERROR_DMA;
HAL_UART_ErrorCallback(huart);
}
/**
* @brief This function handles UART Communication Timeout.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @param Flag specifies the UART flag to check.
* @param Status The new Flag status (SET or RESET).
* @param Tickstart Tick start value
* @param Timeout Timeout duration
* @retval HAL status
*/
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout)
{
/* Wait until flag is set */
while((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout))
{
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
huart->gState = HAL_UART_STATE_READY;
huart->RxState = HAL_UART_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
* @param huart UART handle.
* @retval None
*/
static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
{
/* Disable TXEIE and TCIE interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
/* At end of Tx process, restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
}
/**
* @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
* @param huart UART handle.
* @retval None
*/
static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
{
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* At end of Rx process, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
}
/**
* @brief DMA UART communication abort callback, when initiated by HAL services on Error
* (To be called at end of DMA Abort procedure following error occurrence).
* @param hdma DMA handle.
* @retval None
*/
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
huart->RxXferCount = 0U;
huart->TxXferCount = 0U;
HAL_UART_ErrorCallback(huart);
}
/**
* @brief DMA UART Tx communication abort callback, when initiated by user
* (To be called at end of DMA Tx Abort procedure following user abort request).
* @note When this callback is executed, User Abort complete call back is called only if no
* Abort still ongoing for Rx DMA Handle.
* @param hdma DMA handle.
* @retval None
*/
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
huart->hdmatx->XferAbortCallback = NULL;
/* Check if an Abort process is still ongoing */
if(huart->hdmarx != NULL)
{
if(huart->hdmarx->XferAbortCallback != NULL)
{
return;
}
}
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
huart->TxXferCount = 0x00U;
huart->RxXferCount = 0x00U;
/* Reset ErrorCode */
huart->ErrorCode = HAL_UART_ERROR_NONE;
/* Restore huart->gState and huart->RxState to Ready */
huart->gState = HAL_UART_STATE_READY;
huart->RxState = HAL_UART_STATE_READY;
/* Call user Abort complete callback */
HAL_UART_AbortCpltCallback(huart);
}
/**
* @brief DMA UART Rx communication abort callback, when initiated by user
* (To be called at end of DMA Rx Abort procedure following user abort request).
* @note When this callback is executed, User Abort complete call back is called only if no
* Abort still ongoing for Tx DMA Handle.
* @param hdma DMA handle.
* @retval None
*/
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
huart->hdmarx->XferAbortCallback = NULL;
/* Check if an Abort process is still ongoing */
if(huart->hdmatx != NULL)
{
if(huart->hdmatx->XferAbortCallback != NULL)
{
return;
}
}
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
huart->TxXferCount = 0x00U;
huart->RxXferCount = 0x00U;
/* Reset ErrorCode */
huart->ErrorCode = HAL_UART_ERROR_NONE;
/* Restore huart->gState and huart->RxState to Ready */
huart->gState = HAL_UART_STATE_READY;
huart->RxState = HAL_UART_STATE_READY;
/* Call user Abort complete callback */
HAL_UART_AbortCpltCallback(huart);
}
/**
* @brief DMA UART Tx communication abort callback, when initiated by user by a call to
* HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
* (This callback is executed at end of DMA Tx Abort procedure following user abort request,
* and leads to user Tx Abort Complete callback execution).
* @param hdma DMA handle.
* @retval None
*/
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
huart->TxXferCount = 0x00U;
/* Restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
/* Call user Abort complete callback */
HAL_UART_AbortTransmitCpltCallback(huart);
}
/**
* @brief DMA UART Rx communication abort callback, when initiated by user by a call to
* HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
* (This callback is executed at end of DMA Rx Abort procedure following user abort request,
* and leads to user Rx Abort Complete callback execution).
* @param hdma DMA handle.
* @retval None
*/
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
huart->RxXferCount = 0x00U;
/* Restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
/* Call user Abort complete callback */
HAL_UART_AbortReceiveCpltCallback(huart);
}
/**
* @brief Sends an amount of data in non blocking mode.
* @param huart Pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
{
uint16_t* tmp;
/* Check that a Tx process is ongoing */
if(huart->gState == HAL_UART_STATE_BUSY_TX)
{
if(huart->Init.WordLength == UART_WORDLENGTH_9B)
{
tmp = (uint16_t*) huart->pTxBuffPtr;
huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
if(huart->Init.Parity == UART_PARITY_NONE)
{
huart->pTxBuffPtr += 2U;
}
else
{
huart->pTxBuffPtr += 1U;
}
}
else
{
huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
}
if(--huart->TxXferCount == 0U)
{
/* Disable the UART Transmit Complete Interrupt */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
/* Enable the UART Transmit Complete Interrupt */
SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Wraps up transmission in non blocking mode.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
{
/* Disable the UART Transmit Complete Interrupt */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
/* Tx process is ended, restore huart->gState to Ready */
huart->gState = HAL_UART_STATE_READY;
HAL_UART_TxCpltCallback(huart);
return HAL_OK;
}
/**
* @brief Receives an amount of data in non blocking mode
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval HAL status
*/
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
{
uint16_t* tmp;
/* Check that a Rx process is ongoing */
if(huart->RxState == HAL_UART_STATE_BUSY_RX)
{
if(huart->Init.WordLength == UART_WORDLENGTH_9B)
{
tmp = (uint16_t*) huart->pRxBuffPtr;
if(huart->Init.Parity == UART_PARITY_NONE)
{
*tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
huart->pRxBuffPtr += 2U;
}
else
{
*tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
huart->pRxBuffPtr += 1U;
}
}
else
{
if(huart->Init.Parity == UART_PARITY_NONE)
{
*huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
}
else
{
*huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
}
}
if(--huart->RxXferCount == 0U)
{
/* Disable the UART Parity Error Interrupt and RXNE interrupt*/
CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
/* Rx process is completed, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
HAL_UART_RxCpltCallback(huart);
return HAL_OK;
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Configures the UART peripheral.
* @param huart pointer to a UART_HandleTypeDef structure that contains
* the configuration information for the specified UART module.
* @retval None
*/
static void UART_SetConfig(UART_HandleTypeDef *huart)
{
uint32_t tmpreg = 0x00U;
/* Check the parameters */
assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
assert_param(IS_UART_PARITY(huart->Init.Parity));
assert_param(IS_UART_MODE(huart->Init.Mode));
/*-------------------------- USART CR2 Configuration -----------------------*/
tmpreg = huart->Instance->CR2;
/* Clear STOP[13:12] bits */
tmpreg &= (uint32_t)~((uint32_t)USART_CR2_STOP);
/* Configure the UART Stop Bits: Set STOP[13:12] bits according to huart->Init.StopBits value */
tmpreg |= (uint32_t)huart->Init.StopBits;
/* Write to USART CR2 */
WRITE_REG(huart->Instance->CR2, (uint32_t)tmpreg);
/*-------------------------- USART CR1 Configuration -----------------------*/
tmpreg = huart->Instance->CR1;
/* Clear M, PCE, PS, TE and RE bits */
tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \
USART_CR1_RE | USART_CR1_OVER8));
/* Configure the UART Word Length, Parity and mode:
Set the M bits according to huart->Init.WordLength value
Set PCE and PS bits according to huart->Init.Parity value
Set TE and RE bits according to huart->Init.Mode value
Set OVER8 bit according to huart->Init.OverSampling value */
tmpreg |= (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
/* Write to USART CR1 */
WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
/*-------------------------- USART CR3 Configuration -----------------------*/
tmpreg = huart->Instance->CR3;
/* Clear CTSE and RTSE bits */
tmpreg &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE));
/* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
tmpreg |= huart->Init.HwFlowCtl;
/* Write to USART CR3 */
WRITE_REG(huart->Instance->CR3, (uint32_t)tmpreg);
/* Check the Over Sampling */
if(huart->Init.OverSampling == UART_OVERSAMPLING_8)
{
/*-------------------------- USART BRR Configuration ---------------------*/
#if defined(USART6)
if((huart->Instance == USART1) || (huart->Instance == USART6))
{
huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
}
#else
if(huart->Instance == USART1)
{
huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
}
#endif /* USART6 */
else
{
huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
}
}
else
{
/*-------------------------- USART BRR Configuration ---------------------*/
#if defined(USART6)
if((huart->Instance == USART1) || (huart->Instance == USART6))
{
huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
}
#else
if(huart->Instance == USART1)
{
huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
}
#endif /* USART6 */
else
{
huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
}
}
}
/**
* @}
*/
#endif /* HAL_UART_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
/*-----------------------------------------------------------
* Application specific definitions.
*
* These definitions should be adjusted for your particular hardware and
* application requirements.
*
* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
*
* See http://www.freertos.org/a00110.html.
*----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* Section where include file can be added */
/* USER CODE END Includes */
/* Ensure stdint is only used by the compiler, and not the assembler. */
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>
#include "main.h"
extern uint32_t SystemCoreClock;
#endif
#define configUSE_PREEMPTION 1
#define configSUPPORT_STATIC_ALLOCATION 0
#define configSUPPORT_DYNAMIC_ALLOCATION 1
#define configUSE_IDLE_HOOK 0
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ ( SystemCoreClock )
#define configTICK_RATE_HZ ((TickType_t)1000)
#define configMAX_PRIORITIES ( 7 )
#define configMINIMAL_STACK_SIZE ((uint16_t)128)
#define configTOTAL_HEAP_SIZE ((size_t)15360)
#define configMAX_TASK_NAME_LEN ( 16 )
#define configUSE_16_BIT_TICKS 0
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
/* Co-routine definitions. */
#define configUSE_CO_ROUTINES 0
#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 0
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4
#endif
/* The lowest interrupt priority that can be used in a call to a "set priority"
function. */
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 15
/* The highest interrupt priority that can be used by any interrupt service
routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
PRIORITY THAN THIS! (higher priorities are lower numeric values. */
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
/* Interrupt priorities used by the kernel port layer itself. These are generic
to all Cortex-M ports, and do not rely on any particular library functions. */
#define configKERNEL_INTERRUPT_PRIORITY ( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* Normal assert() semantics without relying on the provision of an assert.h
header file. */
/* USER CODE BEGIN 1 */
#define configASSERT( x ) if ((x) == 0) {taskDISABLE_INTERRUPTS(); for( ;; );}
/* USER CODE END 1 */
/* Definitions that map the FreeRTOS port interrupt handlers to their CMSIS
standard names. */
#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler
/* IMPORTANT: This define MUST be commented when used with STM32Cube firmware,
to prevent overwriting SysTick_Handler defined within STM32Cube HAL */
/* #define xPortSysTickHandler SysTick_Handler */
/* USER CODE BEGIN Defines */
/* Section where parameter definitions can be added (for instance, to override default ones in FreeRTOS.h) */
/* USER CODE END Defines */
#endif /* FREERTOS_CONFIG_H */
/**
******************************************************************************
* File Name : ADC.h
* Description : This file provides code for the configuration
* of the ADC instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __adc_H
#define __adc_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern ADC_HandleTypeDef hadc1;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
extern void _Error_Handler(char *, int);
void MX_ADC1_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ adc_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : CAN.h
* Description : This file provides code for the configuration
* of the CAN instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __can_H
#define __can_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern CAN_HandleTypeDef hcan1;
extern CAN_HandleTypeDef hcan2;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
extern void _Error_Handler(char *, int);
void MX_CAN1_Init(void);
void MX_CAN2_Init(void);
/* USER CODE BEGIN Prototypes */
void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* CanHandle);
void CAN1ConfigFilters(void);
void CAN2ConfigFilters(void);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ can_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#ifndef __CANID_H
#define __CANID_H
#define CAN_ID_READY 0x100 // Freq: ?? Len: ???
#define CAN_ID_KEY 0x101 // Freq: 10 Len: 1
#define CAN_ID_FRONT_LEFT_WHEEL 0x200 // Freq: 50 Len: 8
#define CAN_ID_BREAK 0x208 // Freq: 50 Len: 8
#define CAN_ID_GAS 0x210 // Freq: 50 Len: 8
#define CAN_ID_REAR_WHEELS 0x215 // Freq: 50 Len: 8
#define CAN_ID_BRAKE_PRESSED 0x231 // Freq: 50 Len: 8
#define CAN_ID_STEERING_WHEEL 0x236 // Freq: 10 Len: 8
#define CAN_ID_CHARGER_TEMP 0x286 // Freq: 10 Len: 8
#define CAN_ID_MOTOR_TEMP_RPM 0x298 // Freq: 10 Len: 8
#define CAN_ID_DRIVING_RANGE 0x346 // Freq: 50 Len: 8
#define CAN_ID_AMPS_VOLTS 0x373 // Freq: 100 Len: 8
#define CAN_ID_CHARGING_STATUS 0x374 // Freq: 10 Len: 8
#define CAN_ID_AC_AMPS_VOLTS 0x389 // Freq: 10 Len: 8
#define CAN_ID_AC_STATUS 0x3A4 // Freq: 10 Len: 8
#define CAN_ID_ODOMETER 0x412 // Freq: 10 Len: 8
#define CAN_ID_GEARBOX 0x418 // Freq: 20 Len: 7
#define CAN_ID_DOOR_WINDOW 0x424 // Freq: 25 Len: 8
#define CAN_ID_CELLINFO1 0x6E1 // Freq: 25 Len: 8
#define CAN_ID_CELLINFO2 0x6E2 // Freq: 25 Len: 8
#define CAN_ID_CELLINFO3 0x6E3 // Freq: 25 Len: 8
#define CAN_ID_CELLINFO4 0x6E4 // Freq: 25 Len: 8
// Limits
#define MIN_ST_WHEEL_ANGLE -0.89F
#define MAX_ST_WHEEL_ANGLE 0.89F // In radians; atan(wheelbase (2.55) / (turning circle (4.5) - car width(1.475))) = angle (40deg)
#define MIN_VELOCITY -5.5F
#define MAX_VELOCITY 5.5F // m/s ( => 19.8 km/h)
// Custom defined CAN messages
// Messages that come from ROS and forwarded
#define CAN_ID_ROS_VELOCITY 0x500
#define CAN_ID_ROS_SAFETY_BRAKE 0x520
#define CAN_ID_ROS_ST_WHEEL_ANGLE 0x540
// Messages from drive controller to master controller
#define CAN_ID_DRIVE_SPEED 0x510
#define CAN_ID_DRIVE_GAS_PEDAL 0x511
#define CAN_ID_DRIVE_SAFETY_BRAKE 0x530
#define CAN_ID_DRIVE_WHEEL_POSITION 0x550
#define CAN_ID_DRIVE_STEERING_PID 0x551
#define CAN_ID_DRIVE_GEARBOX 0x560
#define CAN_ID_DRIVE_HANDBRAKE 0x53F
//Debug messages
#define CAN_ID_DEBUG 0x321
//Custom defined messages lengths
#define CAN_ID_DRIVE_SPEED_LEN 8
#define CAN_ID_DRIVE_GAS_PEDAL_LEN 4
#define CAN_ID_DRIVE_SAFETY_BRAKE_LEN 2
#define CAN_ID_DRIVE_WHEEL_POSITION_LEN 7
#define CAN_ID_DRIVE_STEERING_PID_LEN 4
#define CAN_ID_DRIVE_GEARBOX_LEN 2
#define CAN_ID_DRIVE_HANDBRAKE_LEN 8
#endif /* __CANID_H */
/**
******************************************************************************
* File Name : DAC.h
* Description : This file provides code for the configuration
* of the DAC instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __dac_H
#define __dac_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern DAC_HandleTypeDef hdac;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
extern void _Error_Handler(char *, int);
void MX_DAC_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ dac_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/*
* debug.h
*
* Created on: 11. april 2018
* Author: Karel Meriste
*/
#ifndef DEBUG_H_
#define DEBUG_H_
// Debug printout options
#define DBG_GAS_PEDAL 0
#define DBG_ST_WHEEL 0
#define DBG_GEAR 0
#define DBG_HANDBRAKE 0
#define DBG_ROS_VELOCITY 0
#define DBG_ROS_WHEEL 0
#define DBG_ROS_SAFETY_BRAKE 0
#endif /* DEBUG_H_ */
#include "stm32f4xx_hal.h"
#include "stm32f4xx_hal_can.h"
//GEARS
#define GEAR_P 1U //Park
#define GEAR_R 2U //Reverse
#define GEAR_N 3U //Neutral
#define GEAR_D 4U //Drive
#define GEAR_B 5U //
#define GEAR_C 6U //
#define GEAR_U 7U //Unknown
#define GEAR_E 8U //Error - None of values listed below (car ecu gear defs)
#define MIN_GEAR 1 //Minimum value for gearbox input
#define MAX_GEAR 4 //Maximum value for gearbox input. To use gears B and C, use values 5 or 6
//Car ECU gear definitions
#define ECU_GEAR_P 0x50 //Park
#define ECU_GEAR_R 0x52 //Reverse
#define ECU_GEAR_N 0x4E //Neutral
#define ECU_GEAR_D 0x44 //Drive
#define ECU_GEAR_C 0x83 //
#define ECU_GEAR_B 0x32 //
#define ECU_GEAR_U 0x20 //Unknown
//Gear change status reports
#define GEAR_CHANGE_WRONG_GEAR_ERROR 11
#define GEAR_CHANGE_READY 12
#define GEAR_CHANGE_ERROR 13
#define RPM_ODOMETER_NOT_ZERO_ERROR 14
#define RPM_NOT_ZERO_ERROR 15
#define ODOMETER_SPEED_NOT_ZERO_ERROR 16
//GAS PEDAL
#define MIN_GAS_PEDAL_DAC_VALUE 1263 // 1.00V value for STM32F4DISCOVERY DAC
#define MAX_GAS_PEDAL_DAC_VALUE 2300 // 2.91V is the maximum STM32F4DISCOVERT DAC
#define MAX_GAS_PEDAL_POS_VALUE 1000 //1393+1000 = 2393 <- ca 25% of car gas pedal max value
#define MAX_GAS_PEDAL_INTEGRAL 4095 // Should be same as max dac output value for gas pedal dac
#define MAX10 1700 // Max gas pedal dac output with speed less than 10 kmh
#define MAX15 2000 // Max gas pedal dac output with speed between 10 and 15 kmh
#define MAX20 2300 // Max gas pedal dac output with speed between 15 and 20 kmh
#define SPEED_10 10
#define SPEED_15 15
#define MAX_GAS_PEDAL_ALLOWED_DIFF 20 // Max allowed change in gas pedal dac output
//Gas pedal PID coefficients
#define GAS_PEDAL_KP 30 //Proportional coefficient for gas pedal PID
#define GAS_PEDAL_KI 0 //Integral coefficient for gas pedal PID
#define GAS_PEDAL_KD 400 //Derivative coefficient for gas pedal PID
//Car ECU
#define GAS_PEDAL_MAX_POS_ECU 0xB5 //Max gas pedal position from ECU
#define GAS_PEDAL_ERROR_VALUE_ECU 0xFF //Gas pedal error value from ECU
//BRAKES
//STEERING WHEEL
#define MIN_STEERING_WHEEL_DAC_OUTPUT 80000 // 0.50V (random value atm - depends on DAC to be used)
#define MAX_STEERING_WHEEL_DAC_OUTPUT 160000 // 4.50V (random value atm - depends on DAC to be used)
#define STEERING_WHEEL_MIDDLE 120000 // 2.5V value for steering wheel DAC (depends on DAC, must be changed)
//Steering wheel PID coeddicients
#define STEERING_WHEEL_KP 300 //Proportional coefficient for steering wheel PID
#define STEERING_WHEEL_KI 0 //Integral coefficient for steering wheel PID
#define STEERING_WHEEL_KD 0 //Derivative coefficient for steering wheel PID
#define STEERING_WHEEL_MAX_INTEGRAL 1250
//SAFETY BRAKES
#define SAFETY_BRAKE_ON 1
#define SAFETY_BRAKE_AUTONOMOUS 2
#define SAFETY_BRAKE_REMOTE 3
//OTHER
#define RPM_PER_KMH 55.0f // iMiev motor RPMs per kmh
#define PI 3.14159f
#define DEG180 180
//HANDBRAKE
#define HB_RANGE 400 //Encoder range (can be upto 1400)
#define HB_ADC_RANGE 4096
#define HB_KP 50 //PID proportional constant
#define HB_KI 0 //PID integral constant
#define HB_KD 1 //PID derivative constant
#define HB_MIN_DUTY_COEF 0.15f //
#define HB_MAX_DUTY_COEF 1 //
#define HB_CURRENT_LIMIT 500 //55mv = 1A, 0,055/(3,3/4096) = 62 per amp. 500 = 8.06A
#define MAX_HB_INTEGRAL 1024 //
#define HB_START_DELAY 1000 // in ms
//STRUCTS
struct my_car_parameters {
uint32_t gas_pedal_pid_output; //gas pedal pid dac output value
float speed_ms; //speed calculated from motor rpm
uint8_t gear; //current gear
float wheel_angle_rad; //wheel angle in radians
int wheel_angle_deg; //wheel angle in degrees
uint32_t steering_wheel_pwm; //
uint8_t safety_brake; //state of the safety brake
};
// Holds parameters requested from ROS
struct requested_car_parameters {
float velocity_ms; // m/s
float velocity_kmh; // km/h
float last_velocity_kmh; // kmh
float wheel_angle; // rad
float wheel_angle_deg; // degrees (0.5 precision)
float last_wheel_angle; // degrees (0.5 precision)
uint8_t safety_brake; // 0, 1, 2 requested safety brake state
};
// Current parameters saved from carre ECU CAN
struct car_ecu_parameters {
uint8_t gear; // int number (1-4)
uint8_t motor_temperatur; // Celsius
int32_t motor_rpm; // rounds per minute
uint8_t odometer; // km/h
uint8_t gas_pedal; // percentage
int32_t steering_wheel; // degrees (0.5 precision)
};
// PID controller, will be used for gas pedal and steering wheel angel calculations
struct pid_controller {
int kp; //proportional constant
int ki; //integral constant
int kd; //derivative cosntant
int error;
int integral;
float derivative;
int diff; //unnecessary, will be removed
uint32_t lastTick;
int previous_error;
int delay;
int output;
};
struct hb_controller {
int kp;
int ki;
int kd;
int error;
int integral;
float derivative;
int previous_error;
int delay;
int output;
uint32_t lastTick;
uint32_t min_duty;
uint32_t max_duty;
uint16_t position;
long current;
long setpoint;
};
struct counters {
uint8_t st_wheel;
uint8_t st_wheel_pid;
uint8_t gearbox;
uint8_t speed;
uint8_t gas_pedal;
uint8_t safety_brake;
uint8_t handbrake;
};
void executeGearChange(uint8_t new_gear);
uint8_t changeGear(uint8_t new_gear);
void changeSpeed(void);
void changeWheelAngle(void);
void sendGear(void);
void sendGasPedal(void);
void sendSteeringWheel(void);
void sendHandbrake(void);
void setSteeringWheelPWMOutput(void);
void setGasPedalDACOutput(void);
void setStartingParameters(void);
void setHandbrakePWMOutput(void);
void calculateGasControllerPID(int rpm);
void calculateHBControllerPID(void);
void calculateWheelControllerPID(void);
void startGasPedal(void);
void startHandbrake(void);
void startSteeringWheel(void);
/**
******************************************************************************
* File Name : gpio.h
* Description : This file contains all the functions prototypes for
* the gpio
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __gpio_H
#define __gpio_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_GPIO_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ pinoutConfig_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : main.hpp
* Description : This file contains the common defines of the application
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H
/* Includes ------------------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private define ------------------------------------------------------------*/
#define HB_Current_Pin GPIO_PIN_0
#define HB_Current_GPIO_Port GPIOC
#define HB_LPWM_Pin GPIO_PIN_2
#define HB_LPWM_GPIO_Port GPIOA
#define HB_RPWM_Pin GPIO_PIN_3
#define HB_RPWM_GPIO_Port GPIOA
#define GAS_PEDAL_MAIN_Pin GPIO_PIN_4
#define GAS_PEDAL_MAIN_GPIO_Port GPIOA
#define GAS_PEDAL_SUB_Pin GPIO_PIN_5
#define GAS_PEDAL_SUB_GPIO_Port GPIOA
#define RGB_B_3_Pin GPIO_PIN_6
#define RGB_B_3_GPIO_Port GPIOA
#define RGB_G_3_Pin GPIO_PIN_7
#define RGB_G_3_GPIO_Port GPIOA
#define RGB_R_3_Pin GPIO_PIN_4
#define RGB_R_3_GPIO_Port GPIOC
#define RGB_B_1_Pin GPIO_PIN_5
#define RGB_B_1_GPIO_Port GPIOC
#define RGB_G_1_Pin GPIO_PIN_0
#define RGB_G_1_GPIO_Port GPIOB
#define RGB_R_1_Pin GPIO_PIN_1
#define RGB_R_1_GPIO_Port GPIOB
#define RGB_B_2_Pin GPIO_PIN_2
#define RGB_B_2_GPIO_Port GPIOB
#define RGB_G_2_Pin GPIO_PIN_7
#define RGB_G_2_GPIO_Port GPIOE
#define RGB_R_2_Pin GPIO_PIN_8
#define RGB_R_2_GPIO_Port GPIOE
#define GEAR_P_Pin GPIO_PIN_10
#define GEAR_P_GPIO_Port GPIOE
#define GEAR_R_Pin GPIO_PIN_11
#define GEAR_R_GPIO_Port GPIOE
#define GEAR_N_Pin GPIO_PIN_12
#define GEAR_N_GPIO_Port GPIOE
#define GEAR_D_Pin GPIO_PIN_13
#define GEAR_D_GPIO_Port GPIOE
#define GEAR_B_Pin GPIO_PIN_14
#define GEAR_B_GPIO_Port GPIOE
#define GEAR_C_Pin GPIO_PIN_15
#define GEAR_C_GPIO_Port GPIOE
#define HB_REn_Pin GPIO_PIN_10
#define HB_REn_GPIO_Port GPIOD
#define HB_LEn_Pin GPIO_PIN_11
#define HB_LEn_GPIO_Port GPIOD
#define HB_EncA_Pin GPIO_PIN_12
#define HB_EncA_GPIO_Port GPIOD
#define HB_EncB_Pin GPIO_PIN_13
#define HB_EncB_GPIO_Port GPIOD
#define DEBUG_TX_Pin GPIO_PIN_9
#define DEBUG_TX_GPIO_Port GPIOA
#define DEBUG_RX_Pin GPIO_PIN_10
#define DEBUG_RX_GPIO_Port GPIOA
#define ST_PWM_Pin GPIO_PIN_3
#define ST_PWM_GPIO_Port GPIOB
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
#ifdef __cplusplus
extern "C" {
#endif
void _Error_Handler(char *, int);
#define Error_Handler() _Error_Handler(__FILE__, __LINE__)
#ifdef __cplusplus
}
#endif
/**
* @}
*/
/**
* @}
*/
#endif /* __MAIN_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
//MCP4725 - DAC
#define MCP4725_MSG_SIZE 6 //in bytes
#define MCP4725_CODE 12U //Device code for MCP4725
#define MCP4725_DATA_WRITE 2 //Data send command code
#define MCP4725_DATA_WEOTE_EEPROM 3
#define MCP4725_PD_NORMAL 0U //Normal mode
#define MCP4725_PD_1K 1U //1k resistor to ground
#define MCP4725_PD_100K 2U //100k resistor to ground
#define MCP4725_PD_500K 3U //500k resistor to ground
#define MCP4725_SEND_TIMEOUT 10 //Transmit timeout in ms
#define MCP4725_ADDRESS 0xC0 //Device adress (1st byte from datasheet)
/**
******************************************************************************
* @file stm32f4xx_hal_conf.h
* @brief HAL configuration file.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2018 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_HAL_CONF_H
#define __STM32F4xx_HAL_CONF_H
#ifdef __cplusplus
extern "C" {
#endif
#include "main.h"
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* ########################## Module Selection ############################## */
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
#define HAL_ADC_MODULE_ENABLED
/* #define HAL_CRYP_MODULE_ENABLED */
#define HAL_CAN_MODULE_ENABLED
/* #define HAL_CRC_MODULE_ENABLED */
/* #define HAL_CRYP_MODULE_ENABLED */
#define HAL_DAC_MODULE_ENABLED
/* #define HAL_DCMI_MODULE_ENABLED */
/* #define HAL_DMA2D_MODULE_ENABLED */
/* #define HAL_ETH_MODULE_ENABLED */
/* #define HAL_NAND_MODULE_ENABLED */
/* #define HAL_NOR_MODULE_ENABLED */
/* #define HAL_PCCARD_MODULE_ENABLED */
/* #define HAL_SRAM_MODULE_ENABLED */
/* #define HAL_SDRAM_MODULE_ENABLED */
/* #define HAL_HASH_MODULE_ENABLED */
/* #define HAL_I2C_MODULE_ENABLED */
/* #define HAL_I2S_MODULE_ENABLED */
/* #define HAL_IWDG_MODULE_ENABLED */
/* #define HAL_LTDC_MODULE_ENABLED */
/* #define HAL_RNG_MODULE_ENABLED */
/* #define HAL_RTC_MODULE_ENABLED */
/* #define HAL_SAI_MODULE_ENABLED */
/* #define HAL_SD_MODULE_ENABLED */
/* #define HAL_MMC_MODULE_ENABLED */
/* #define HAL_SPI_MODULE_ENABLED */
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
/* #define HAL_USART_MODULE_ENABLED */
/* #define HAL_IRDA_MODULE_ENABLED */
/* #define HAL_SMARTCARD_MODULE_ENABLED */
/* #define HAL_WWDG_MODULE_ENABLED */
/* #define HAL_PCD_MODULE_ENABLED */
/* #define HAL_HCD_MODULE_ENABLED */
/* #define HAL_DSI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_CEC_MODULE_ENABLED */
/* #define HAL_FMPI2C_MODULE_ENABLED */
/* #define HAL_SPDIFRX_MODULE_ENABLED */
/* #define HAL_DFSDM_MODULE_ENABLED */
/* #define HAL_LPTIM_MODULE_ENABLED */
#define HAL_GPIO_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
#define HAL_FLASH_MODULE_ENABLED
#define HAL_PWR_MODULE_ENABLED
#define HAL_CORTEX_MODULE_ENABLED
/* ########################## HSE/HSI Values adaptation ##################### */
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000U) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSE_STARTUP_TIMEOUT)
#define HSE_STARTUP_TIMEOUT ((uint32_t)100U) /*!< Time out for HSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/**
* @brief Internal High Speed oscillator (HSI) value.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSI is used as system clock source, directly or through the PLL).
*/
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @brief Internal Low Speed oscillator (LSI) value.
*/
#if !defined (LSI_VALUE)
#define LSI_VALUE ((uint32_t)32000U) /*!< LSI Typical Value in Hz*/
#endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz
The real value may vary depending on the variations
in voltage and temperature.*/
/**
* @brief External Low Speed oscillator (LSE) value.
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768U) /*!< Value of the External Low Speed oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT ((uint32_t)5000U) /*!< Time out for LSE start up, in ms */
#endif /* LSE_STARTUP_TIMEOUT */
/**
* @brief External clock source for I2S peripheral
* This value is used by the I2S HAL module to compute the I2S clock source
* frequency, this source is inserted directly through I2S_CKIN pad.
*/
#if !defined (EXTERNAL_CLOCK_VALUE)
#define EXTERNAL_CLOCK_VALUE ((uint32_t)12288000U) /*!< Value of the External audio frequency in Hz*/
#endif /* EXTERNAL_CLOCK_VALUE */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0U) /*!< tick interrupt priority */
#define USE_RTOS 0U
#define PREFETCH_ENABLE 1U
#define INSTRUCTION_CACHE_ENABLE 1U
#define DATA_CACHE_ENABLE 1U
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* ################## Ethernet peripheral configuration ##################### */
/* Section 1 : Ethernet peripheral configuration */
/* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */
#define MAC_ADDR0 2U
#define MAC_ADDR1 0U
#define MAC_ADDR2 0U
#define MAC_ADDR3 0U
#define MAC_ADDR4 0U
#define MAC_ADDR5 0U
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB ((uint32_t)4U) /* 4 Rx buffers of size ETH_RX_BUF_SIZE */
#define ETH_TXBUFNB ((uint32_t)4U) /* 4 Tx buffers of size ETH_TX_BUF_SIZE */
/* Section 2: PHY configuration section */
/* DP83848_PHY_ADDRESS Address*/
#define DP83848_PHY_ADDRESS 0x01U
/* PHY Reset delay these values are based on a 1 ms Systick interrupt*/
#define PHY_RESET_DELAY ((uint32_t)0x000000FFU)
/* PHY Configuration delay */
#define PHY_CONFIG_DELAY ((uint32_t)0x00000FFFU)
#define PHY_READ_TO ((uint32_t)0x0000FFFFU)
#define PHY_WRITE_TO ((uint32_t)0x0000FFFFU)
/* Section 3: Common PHY Registers */
#define PHY_BCR ((uint16_t)0x0000U) /*!< Transceiver Basic Control Register */
#define PHY_BSR ((uint16_t)0x0001U) /*!< Transceiver Basic Status Register */
#define PHY_RESET ((uint16_t)0x8000U) /*!< PHY Reset */
#define PHY_LOOPBACK ((uint16_t)0x4000U) /*!< Select loop-back mode */
#define PHY_FULLDUPLEX_100M ((uint16_t)0x2100U) /*!< Set the full-duplex mode at 100 Mb/s */
#define PHY_HALFDUPLEX_100M ((uint16_t)0x2000U) /*!< Set the half-duplex mode at 100 Mb/s */
#define PHY_FULLDUPLEX_10M ((uint16_t)0x0100U) /*!< Set the full-duplex mode at 10 Mb/s */
#define PHY_HALFDUPLEX_10M ((uint16_t)0x0000U) /*!< Set the half-duplex mode at 10 Mb/s */
#define PHY_AUTONEGOTIATION ((uint16_t)0x1000U) /*!< Enable auto-negotiation function */
#define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200U) /*!< Restart auto-negotiation function */
#define PHY_POWERDOWN ((uint16_t)0x0800U) /*!< Select the power down mode */
#define PHY_ISOLATE ((uint16_t)0x0400U) /*!< Isolate PHY from MII */
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002U) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)0x10U) /*!< PHY status register Offset */
#define PHY_SPEED_STATUS ((uint16_t)0x0002U) /*!< PHY Speed mask */
#define PHY_DUPLEX_STATUS ((uint16_t)0x0004U) /*!< PHY Duplex mask */
/* ################## SPI peripheral configuration ########################## */
/* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver
* Activated: CRC code is present inside driver
* Deactivated: CRC code cleaned from driver
*/
#define USE_SPI_CRC 0U
/* Includes ------------------------------------------------------------------*/
/**
* @brief Include module's header file
*/
#ifdef HAL_RCC_MODULE_ENABLED
#include "stm32f4xx_hal_rcc.h"
#endif /* HAL_RCC_MODULE_ENABLED */
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32f4xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f4xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f4xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
#include "stm32f4xx_hal_adc.h"
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_CAN_MODULE_ENABLED
#include "stm32f4xx_hal_can.h"
#endif /* HAL_CAN_MODULE_ENABLED */
#ifdef HAL_CRC_MODULE_ENABLED
#include "stm32f4xx_hal_crc.h"
#endif /* HAL_CRC_MODULE_ENABLED */
#ifdef HAL_CRYP_MODULE_ENABLED
#include "stm32f4xx_hal_cryp.h"
#endif /* HAL_CRYP_MODULE_ENABLED */
#ifdef HAL_DMA2D_MODULE_ENABLED
#include "stm32f4xx_hal_dma2d.h"
#endif /* HAL_DMA2D_MODULE_ENABLED */
#ifdef HAL_DAC_MODULE_ENABLED
#include "stm32f4xx_hal_dac.h"
#endif /* HAL_DAC_MODULE_ENABLED */
#ifdef HAL_DCMI_MODULE_ENABLED
#include "stm32f4xx_hal_dcmi.h"
#endif /* HAL_DCMI_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32f4xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_FLASH_MODULE_ENABLED
#include "stm32f4xx_hal_flash.h"
#endif /* HAL_FLASH_MODULE_ENABLED */
#ifdef HAL_SRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sram.h"
#endif /* HAL_SRAM_MODULE_ENABLED */
#ifdef HAL_NOR_MODULE_ENABLED
#include "stm32f4xx_hal_nor.h"
#endif /* HAL_NOR_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32f4xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f4xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_SDRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sdram.h"
#endif /* HAL_SDRAM_MODULE_ENABLED */
#ifdef HAL_HASH_MODULE_ENABLED
#include "stm32f4xx_hal_hash.h"
#endif /* HAL_HASH_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
#include "stm32f4xx_hal_i2c.h"
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_I2S_MODULE_ENABLED
#include "stm32f4xx_hal_i2s.h"
#endif /* HAL_I2S_MODULE_ENABLED */
#ifdef HAL_IWDG_MODULE_ENABLED
#include "stm32f4xx_hal_iwdg.h"
#endif /* HAL_IWDG_MODULE_ENABLED */
#ifdef HAL_LTDC_MODULE_ENABLED
#include "stm32f4xx_hal_ltdc.h"
#endif /* HAL_LTDC_MODULE_ENABLED */
#ifdef HAL_PWR_MODULE_ENABLED
#include "stm32f4xx_hal_pwr.h"
#endif /* HAL_PWR_MODULE_ENABLED */
#ifdef HAL_RNG_MODULE_ENABLED
#include "stm32f4xx_hal_rng.h"
#endif /* HAL_RNG_MODULE_ENABLED */
#ifdef HAL_RTC_MODULE_ENABLED
#include "stm32f4xx_hal_rtc.h"
#endif /* HAL_RTC_MODULE_ENABLED */
#ifdef HAL_SAI_MODULE_ENABLED
#include "stm32f4xx_hal_sai.h"
#endif /* HAL_SAI_MODULE_ENABLED */
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32f4xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_MMC_MODULE_ENABLED
#include "stm32f4xx_hal_mmc.h"
#endif /* HAL_MMC_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32f4xx_hal_spi.h"
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_TIM_MODULE_ENABLED
#include "stm32f4xx_hal_tim.h"
#endif /* HAL_TIM_MODULE_ENABLED */
#ifdef HAL_UART_MODULE_ENABLED
#include "stm32f4xx_hal_uart.h"
#endif /* HAL_UART_MODULE_ENABLED */
#ifdef HAL_USART_MODULE_ENABLED
#include "stm32f4xx_hal_usart.h"
#endif /* HAL_USART_MODULE_ENABLED */
#ifdef HAL_IRDA_MODULE_ENABLED
#include "stm32f4xx_hal_irda.h"
#endif /* HAL_IRDA_MODULE_ENABLED */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
#include "stm32f4xx_hal_smartcard.h"
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
#ifdef HAL_WWDG_MODULE_ENABLED
#include "stm32f4xx_hal_wwdg.h"
#endif /* HAL_WWDG_MODULE_ENABLED */
#ifdef HAL_PCD_MODULE_ENABLED
#include "stm32f4xx_hal_pcd.h"
#endif /* HAL_PCD_MODULE_ENABLED */
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f4xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_DSI_MODULE_ENABLED
#include "stm32f4xx_hal_dsi.h"
#endif /* HAL_DSI_MODULE_ENABLED */
#ifdef HAL_QSPI_MODULE_ENABLED
#include "stm32f4xx_hal_qspi.h"
#endif /* HAL_QSPI_MODULE_ENABLED */
#ifdef HAL_CEC_MODULE_ENABLED
#include "stm32f4xx_hal_cec.h"
#endif /* HAL_CEC_MODULE_ENABLED */
#ifdef HAL_FMPI2C_MODULE_ENABLED
#include "stm32f4xx_hal_fmpi2c.h"
#endif /* HAL_FMPI2C_MODULE_ENABLED */
#ifdef HAL_SPDIFRX_MODULE_ENABLED
#include "stm32f4xx_hal_spdifrx.h"
#endif /* HAL_SPDIFRX_MODULE_ENABLED */
#ifdef HAL_DFSDM_MODULE_ENABLED
#include "stm32f4xx_hal_dfsdm.h"
#endif /* HAL_DFSDM_MODULE_ENABLED */
#ifdef HAL_LPTIM_MODULE_ENABLED
#include "stm32f4xx_hal_lptim.h"
#endif /* HAL_LPTIM_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_HAL_CONF_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* @file stm32f4xx_it.h
* @brief This file contains the headers of the interrupt handlers.
******************************************************************************
*
* COPYRIGHT(c) 2018 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_IT_H
#define __STM32F4xx_IT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
void SysTick_Handler(void);
void EXTI0_IRQHandler(void);
void CAN1_TX_IRQHandler(void);
void CAN1_RX0_IRQHandler(void);
void CAN1_SCE_IRQHandler(void);
void TIM1_UP_TIM10_IRQHandler(void);
void USART1_IRQHandler(void);
void TIM6_DAC_IRQHandler(void);
void CAN2_TX_IRQHandler(void);
void CAN2_RX0_IRQHandler(void);
void CAN2_SCE_IRQHandler(void);
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_IT_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : TIM.h
* Description : This file provides code for the configuration
* of the TIM instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __tim_H
#define __tim_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim4;
extern TIM_HandleTypeDef htim5;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
extern void _Error_Handler(char *, int);
void MX_TIM2_Init(void);
void MX_TIM4_Init(void);
void MX_TIM5_Init(void);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ tim_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : USART.h
* Description : This file provides code for the configuration
* of the USART instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __usart_H
#define __usart_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern UART_HandleTypeDef huart1;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
extern void _Error_Handler(char *, int);
void MX_USART1_UART_Init(void);
/* USER CODE BEGIN Prototypes */
void PutChar(USART_TypeDef* USARTx, uint8_t ch);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ usart_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#include "stdint.h"
void char2float(char value[], float *p_result);
float convertMStoKMH(float speed_ms);
float convertRADtoFLOAT(float rad);
/* ----------------------------------------------------------------------
* $Date: 5. February 2013
* $Revision: V1.02
*
* Project: CMSIS-RTOS API
* Title: cmsis_os.c
*
* Version 0.02
* Initial Proposal Phase
* Version 0.03
* osKernelStart added, optional feature: main started as thread
* osSemaphores have standard behavior
* osTimerCreate does not start the timer, added osTimerStart
* osThreadPass is renamed to osThreadYield
* Version 1.01
* Support for C++ interface
* - const attribute removed from the osXxxxDef_t typedef's
* - const attribute added to the osXxxxDef macros
* Added: osTimerDelete, osMutexDelete, osSemaphoreDelete
* Added: osKernelInitialize
* Version 1.02
* Control functions for short timeouts in microsecond resolution:
* Added: osKernelSysTick, osKernelSysTickFrequency, osKernelSysTickMicroSec
* Removed: osSignalGet
*
*
*----------------------------------------------------------------------------
*
* Portions Copyright © 2016 STMicroelectronics International N.V. All rights reserved.
* Portions Copyright (c) 2013 ARM LIMITED
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*---------------------------------------------------------------------------*/
/**
******************************************************************************
* @file cmsis_os.c
* @author MCD Application Team
* @date 13-July-2017
* @brief CMSIS-RTOS API implementation for FreeRTOS V9.0.0
******************************************************************************
* @attention
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include <string.h>
#include "cmsis_os.h"
/*
* ARM Compiler 4/5
*/
#if defined ( __CC_ARM )
#define __ASM __asm
#define __INLINE __inline
#define __STATIC_INLINE static __inline
#include "cmsis_armcc.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#define __ASM __asm /*!< asm keyword for GNU Compiler */
#define __INLINE inline /*!< inline keyword for GNU Compiler */
#define __STATIC_INLINE static inline
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#include <cmsis_iar.h>
#endif
extern void xPortSysTickHandler(void);
/* Convert from CMSIS type osPriority to FreeRTOS priority number */
static unsigned portBASE_TYPE makeFreeRtosPriority (osPriority priority)
{
unsigned portBASE_TYPE fpriority = tskIDLE_PRIORITY;
if (priority != osPriorityError) {
fpriority += (priority - osPriorityIdle);
}
return fpriority;
}
#if (INCLUDE_uxTaskPriorityGet == 1)
/* Convert from FreeRTOS priority number to CMSIS type osPriority */
static osPriority makeCmsisPriority (unsigned portBASE_TYPE fpriority)
{
osPriority priority = osPriorityError;
if ((fpriority - tskIDLE_PRIORITY) <= (osPriorityRealtime - osPriorityIdle)) {
priority = (osPriority)((int)osPriorityIdle + (int)(fpriority - tskIDLE_PRIORITY));
}
return priority;
}
#endif
/* Determine whether we are in thread mode or handler mode. */
static int inHandlerMode (void)
{
return __get_IPSR() != 0;
}
/*********************** Kernel Control Functions *****************************/
/**
* @brief Initialize the RTOS Kernel for creating objects.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osKernelInitialize shall be consistent in every CMSIS-RTOS.
*/
osStatus osKernelInitialize (void);
/**
* @brief Start the RTOS Kernel with executing the specified thread.
* @param thread_def thread definition referenced with \ref osThread.
* @param argument pointer that is passed to the thread function as start argument.
* @retval status code that indicates the execution status of the function
* @note MUST REMAIN UNCHANGED: \b osKernelStart shall be consistent in every CMSIS-RTOS.
*/
osStatus osKernelStart (void)
{
vTaskStartScheduler();
return osOK;
}
/**
* @brief Check if the RTOS kernel is already started
* @param None
* @retval (0) RTOS is not started
* (1) RTOS is started
* (-1) if this feature is disabled in FreeRTOSConfig.h
* @note MUST REMAIN UNCHANGED: \b osKernelRunning shall be consistent in every CMSIS-RTOS.
*/
int32_t osKernelRunning(void)
{
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED)
return 0;
else
return 1;
#else
return (-1);
#endif
}
#if (defined (osFeature_SysTick) && (osFeature_SysTick != 0)) // System Timer available
/**
* @brief Get the value of the Kernel SysTick timer
* @param None
* @retval None
* @note MUST REMAIN UNCHANGED: \b osKernelSysTick shall be consistent in every CMSIS-RTOS.
*/
uint32_t osKernelSysTick(void)
{
if (inHandlerMode()) {
return xTaskGetTickCountFromISR();
}
else {
return xTaskGetTickCount();
}
}
#endif // System Timer available
/*********************** Thread Management *****************************/
/**
* @brief Create a thread and add it to Active Threads and set it to state READY.
* @param thread_def thread definition referenced with \ref osThread.
* @param argument pointer that is passed to the thread function as start argument.
* @retval thread ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osThreadCreate shall be consistent in every CMSIS-RTOS.
*/
osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument)
{
TaskHandle_t handle;
#if( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
if((thread_def->buffer != NULL) && (thread_def->controlblock != NULL)) {
handle = xTaskCreateStatic((TaskFunction_t)thread_def->pthread,(const portCHAR *)thread_def->name,
thread_def->stacksize, argument, makeFreeRtosPriority(thread_def->tpriority),
thread_def->buffer, thread_def->controlblock);
}
else {
if (xTaskCreate((TaskFunction_t)thread_def->pthread,(const portCHAR *)thread_def->name,
thread_def->stacksize, argument, makeFreeRtosPriority(thread_def->tpriority),
&handle) != pdPASS) {
return NULL;
}
}
#elif( configSUPPORT_STATIC_ALLOCATION == 1 )
handle = xTaskCreateStatic((TaskFunction_t)thread_def->pthread,(const portCHAR *)thread_def->name,
thread_def->stacksize, argument, makeFreeRtosPriority(thread_def->tpriority),
thread_def->buffer, thread_def->controlblock);
#else
if (xTaskCreate((TaskFunction_t)thread_def->pthread,(const portCHAR *)thread_def->name,
thread_def->stacksize, argument, makeFreeRtosPriority(thread_def->tpriority),
&handle) != pdPASS) {
return NULL;
}
#endif
return handle;
}
/**
* @brief Return the thread ID of the current running thread.
* @retval thread ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osThreadGetId shall be consistent in every CMSIS-RTOS.
*/
osThreadId osThreadGetId (void)
{
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
return xTaskGetCurrentTaskHandle();
#else
return NULL;
#endif
}
/**
* @brief Terminate execution of a thread and remove it from Active Threads.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osThreadTerminate shall be consistent in every CMSIS-RTOS.
*/
osStatus osThreadTerminate (osThreadId thread_id)
{
#if (INCLUDE_vTaskDelete == 1)
vTaskDelete(thread_id);
return osOK;
#else
return osErrorOS;
#endif
}
/**
* @brief Pass control to next thread that is in state \b READY.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osThreadYield shall be consistent in every CMSIS-RTOS.
*/
osStatus osThreadYield (void)
{
taskYIELD();
return osOK;
}
/**
* @brief Change priority of an active thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @param priority new priority value for the thread function.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osThreadSetPriority shall be consistent in every CMSIS-RTOS.
*/
osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority)
{
#if (INCLUDE_vTaskPrioritySet == 1)
vTaskPrioritySet(thread_id, makeFreeRtosPriority(priority));
return osOK;
#else
return osErrorOS;
#endif
}
/**
* @brief Get current priority of an active thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval current priority value of the thread function.
* @note MUST REMAIN UNCHANGED: \b osThreadGetPriority shall be consistent in every CMSIS-RTOS.
*/
osPriority osThreadGetPriority (osThreadId thread_id)
{
#if (INCLUDE_uxTaskPriorityGet == 1)
if (inHandlerMode())
{
return makeCmsisPriority(uxTaskPriorityGetFromISR(thread_id));
}
else
{
return makeCmsisPriority(uxTaskPriorityGet(thread_id));
}
#else
return osPriorityError;
#endif
}
/*********************** Generic Wait Functions *******************************/
/**
* @brief Wait for Timeout (Time Delay)
* @param millisec time delay value
* @retval status code that indicates the execution status of the function.
*/
osStatus osDelay (uint32_t millisec)
{
#if INCLUDE_vTaskDelay
TickType_t ticks = millisec / portTICK_PERIOD_MS;
vTaskDelay(ticks ? ticks : 1); /* Minimum delay = 1 tick */
return osOK;
#else
(void) millisec;
return osErrorResource;
#endif
}
#if (defined (osFeature_Wait) && (osFeature_Wait != 0)) /* Generic Wait available */
/**
* @brief Wait for Signal, Message, Mail, or Timeout
* @param millisec timeout value or 0 in case of no time-out
* @retval event that contains signal, message, or mail information or error code.
* @note MUST REMAIN UNCHANGED: \b osWait shall be consistent in every CMSIS-RTOS.
*/
osEvent osWait (uint32_t millisec);
#endif /* Generic Wait available */
/*********************** Timer Management Functions ***************************/
/**
* @brief Create a timer.
* @param timer_def timer object referenced with \ref osTimer.
* @param type osTimerOnce for one-shot or osTimerPeriodic for periodic behavior.
* @param argument argument to the timer call back function.
* @retval timer ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osTimerCreate shall be consistent in every CMSIS-RTOS.
*/
osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument)
{
#if (configUSE_TIMERS == 1)
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
if(timer_def->controlblock != NULL) {
return xTimerCreateStatic((const char *)"",
1, // period should be filled when starting the Timer using osTimerStart
(type == osTimerPeriodic) ? pdTRUE : pdFALSE,
(void *) argument,
(TaskFunction_t)timer_def->ptimer,
(StaticTimer_t *)timer_def->controlblock);
}
else {
return xTimerCreate((const char *)"",
1, // period should be filled when starting the Timer using osTimerStart
(type == osTimerPeriodic) ? pdTRUE : pdFALSE,
(void *) argument,
(TaskFunction_t)timer_def->ptimer);
}
#elif( configSUPPORT_STATIC_ALLOCATION == 1 )
return xTimerCreateStatic((const char *)"",
1, // period should be filled when starting the Timer using osTimerStart
(type == osTimerPeriodic) ? pdTRUE : pdFALSE,
(void *) argument,
(TaskFunction_t)timer_def->ptimer,
(StaticTimer_t *)timer_def->controlblock);
#else
return xTimerCreate((const char *)"",
1, // period should be filled when starting the Timer using osTimerStart
(type == osTimerPeriodic) ? pdTRUE : pdFALSE,
(void *) argument,
(TaskFunction_t)timer_def->ptimer);
#endif
#else
return NULL;
#endif
}
/**
* @brief Start or restart a timer.
* @param timer_id timer ID obtained by \ref osTimerCreate.
* @param millisec time delay value of the timer.
* @retval status code that indicates the execution status of the function
* @note MUST REMAIN UNCHANGED: \b osTimerStart shall be consistent in every CMSIS-RTOS.
*/
osStatus osTimerStart (osTimerId timer_id, uint32_t millisec)
{
osStatus result = osOK;
#if (configUSE_TIMERS == 1)
portBASE_TYPE taskWoken = pdFALSE;
TickType_t ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0)
ticks = 1;
if (inHandlerMode())
{
if (xTimerChangePeriodFromISR(timer_id, ticks, &taskWoken) != pdPASS)
{
result = osErrorOS;
}
else
{
portEND_SWITCHING_ISR(taskWoken);
}
}
else
{
if (xTimerChangePeriod(timer_id, ticks, 0) != pdPASS)
result = osErrorOS;
}
#else
result = osErrorOS;
#endif
return result;
}
/**
* @brief Stop a timer.
* @param timer_id timer ID obtained by \ref osTimerCreate
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osTimerStop shall be consistent in every CMSIS-RTOS.
*/
osStatus osTimerStop (osTimerId timer_id)
{
osStatus result = osOK;
#if (configUSE_TIMERS == 1)
portBASE_TYPE taskWoken = pdFALSE;
if (inHandlerMode()) {
if (xTimerStopFromISR(timer_id, &taskWoken) != pdPASS) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xTimerStop(timer_id, 0) != pdPASS) {
result = osErrorOS;
}
}
#else
result = osErrorOS;
#endif
return result;
}
/**
* @brief Delete a timer.
* @param timer_id timer ID obtained by \ref osTimerCreate
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osTimerDelete shall be consistent in every CMSIS-RTOS.
*/
osStatus osTimerDelete (osTimerId timer_id)
{
osStatus result = osOK;
#if (configUSE_TIMERS == 1)
if (inHandlerMode()) {
return osErrorISR;
}
else {
if ((xTimerDelete(timer_id, osWaitForever )) != pdPASS) {
result = osErrorOS;
}
}
#else
result = osErrorOS;
#endif
return result;
}
/*************************** Signal Management ********************************/
/**
* @brief Set the specified Signal Flags of an active thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @param signals specifies the signal flags of the thread that should be set.
* @retval previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
* @note MUST REMAIN UNCHANGED: \b osSignalSet shall be consistent in every CMSIS-RTOS.
*/
int32_t osSignalSet (osThreadId thread_id, int32_t signal)
{
#if( configUSE_TASK_NOTIFICATIONS == 1 )
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
uint32_t ulPreviousNotificationValue = 0;
if (inHandlerMode())
{
if(xTaskGenericNotifyFromISR( thread_id , (uint32_t)signal, eSetBits, &ulPreviousNotificationValue, &xHigherPriorityTaskWoken ) != pdPASS )
return 0x80000000;
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
else if(xTaskGenericNotify( thread_id , (uint32_t)signal, eSetBits, &ulPreviousNotificationValue) != pdPASS )
return 0x80000000;
return ulPreviousNotificationValue;
#else
(void) thread_id;
(void) signal;
return 0x80000000; /* Task Notification not supported */
#endif
}
/**
* @brief Clear the specified Signal Flags of an active thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @param signals specifies the signal flags of the thread that shall be cleared.
* @retval previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
* @note MUST REMAIN UNCHANGED: \b osSignalClear shall be consistent in every CMSIS-RTOS.
*/
int32_t osSignalClear (osThreadId thread_id, int32_t signal);
/**
* @brief Wait for one or more Signal Flags to become signaled for the current \b RUNNING thread.
* @param signals wait until all specified signal flags set or 0 for any single signal flag.
* @param millisec timeout value or 0 in case of no time-out.
* @retval event flag information or error code.
* @note MUST REMAIN UNCHANGED: \b osSignalWait shall be consistent in every CMSIS-RTOS.
*/
osEvent osSignalWait (int32_t signals, uint32_t millisec)
{
osEvent ret;
#if( configUSE_TASK_NOTIFICATIONS == 1 )
TickType_t ticks;
ret.value.signals = 0;
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (inHandlerMode())
{
ret.status = osErrorISR; /*Not allowed in ISR*/
}
else
{
if(xTaskNotifyWait( 0,(uint32_t) signals, (uint32_t *)&ret.value.signals, ticks) != pdTRUE)
{
if(ticks == 0) ret.status = osOK;
else ret.status = osEventTimeout;
}
else if(ret.value.signals < 0)
{
ret.status = osErrorValue;
}
else ret.status = osEventSignal;
}
#else
(void) signals;
(void) millisec;
ret.status = osErrorOS; /* Task Notification not supported */
#endif
return ret;
}
/**************************** Mutex Management ********************************/
/**
* @brief Create and Initialize a Mutex object
* @param mutex_def mutex definition referenced with \ref osMutex.
* @retval mutex ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osMutexCreate shall be consistent in every CMSIS-RTOS.
*/
osMutexId osMutexCreate (const osMutexDef_t *mutex_def)
{
#if ( configUSE_MUTEXES == 1)
#if( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
if (mutex_def->controlblock != NULL) {
return xSemaphoreCreateMutexStatic( mutex_def->controlblock );
}
else {
return xSemaphoreCreateMutex();
}
#elif ( configSUPPORT_STATIC_ALLOCATION == 1 )
return xSemaphoreCreateMutexStatic( mutex_def->controlblock );
#else
return xSemaphoreCreateMutex();
#endif
#else
return NULL;
#endif
}
/**
* @brief Wait until a Mutex becomes available
* @param mutex_id mutex ID obtained by \ref osMutexCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMutexWait shall be consistent in every CMSIS-RTOS.
*/
osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec)
{
TickType_t ticks;
portBASE_TYPE taskWoken = pdFALSE;
if (mutex_id == NULL) {
return osErrorParameter;
}
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (inHandlerMode()) {
if (xSemaphoreTakeFromISR(mutex_id, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else if (xSemaphoreTake(mutex_id, ticks) != pdTRUE) {
return osErrorOS;
}
return osOK;
}
/**
* @brief Release a Mutex that was obtained by \ref osMutexWait
* @param mutex_id mutex ID obtained by \ref osMutexCreate.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMutexRelease shall be consistent in every CMSIS-RTOS.
*/
osStatus osMutexRelease (osMutexId mutex_id)
{
osStatus result = osOK;
portBASE_TYPE taskWoken = pdFALSE;
if (inHandlerMode()) {
if (xSemaphoreGiveFromISR(mutex_id, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else if (xSemaphoreGive(mutex_id) != pdTRUE)
{
result = osErrorOS;
}
return result;
}
/**
* @brief Delete a Mutex
* @param mutex_id mutex ID obtained by \ref osMutexCreate.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMutexDelete shall be consistent in every CMSIS-RTOS.
*/
osStatus osMutexDelete (osMutexId mutex_id)
{
if (inHandlerMode()) {
return osErrorISR;
}
vQueueDelete(mutex_id);
return osOK;
}
/******************** Semaphore Management Functions **************************/
#if (defined (osFeature_Semaphore) && (osFeature_Semaphore != 0))
/**
* @brief Create and Initialize a Semaphore object used for managing resources
* @param semaphore_def semaphore definition referenced with \ref osSemaphore.
* @param count number of available resources.
* @retval semaphore ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osSemaphoreCreate shall be consistent in every CMSIS-RTOS.
*/
osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count)
{
#if( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
osSemaphoreId sema;
if (semaphore_def->controlblock != NULL){
if (count == 1) {
return xSemaphoreCreateBinaryStatic( semaphore_def->controlblock );
}
else {
#if (configUSE_COUNTING_SEMAPHORES == 1 )
return xSemaphoreCreateCountingStatic( count, count, semaphore_def->controlblock );
#else
return NULL;
#endif
}
}
else {
if (count == 1) {
vSemaphoreCreateBinary(sema);
return sema;
}
else {
#if (configUSE_COUNTING_SEMAPHORES == 1 )
return xSemaphoreCreateCounting(count, count);
#else
return NULL;
#endif
}
}
#elif ( configSUPPORT_STATIC_ALLOCATION == 1 ) // configSUPPORT_DYNAMIC_ALLOCATION == 0
if(count == 1) {
return xSemaphoreCreateBinaryStatic( semaphore_def->controlblock );
}
else
{
#if (configUSE_COUNTING_SEMAPHORES == 1 )
return xSemaphoreCreateCountingStatic( count, count, semaphore_def->controlblock );
#else
return NULL;
#endif
}
#else // configSUPPORT_STATIC_ALLOCATION == 0 && configSUPPORT_DYNAMIC_ALLOCATION == 1
osSemaphoreId sema;
if (count == 1) {
vSemaphoreCreateBinary(sema);
return sema;
}
else {
#if (configUSE_COUNTING_SEMAPHORES == 1 )
return xSemaphoreCreateCounting(count, count);
#else
return NULL;
#endif
}
#endif
}
/**
* @brief Wait until a Semaphore token becomes available
* @param semaphore_id semaphore object referenced with \ref osSemaphore.
* @param millisec timeout value or 0 in case of no time-out.
* @retval number of available tokens, or -1 in case of incorrect parameters.
* @note MUST REMAIN UNCHANGED: \b osSemaphoreWait shall be consistent in every CMSIS-RTOS.
*/
int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec)
{
TickType_t ticks;
portBASE_TYPE taskWoken = pdFALSE;
if (semaphore_id == NULL) {
return osErrorParameter;
}
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (inHandlerMode()) {
if (xSemaphoreTakeFromISR(semaphore_id, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else if (xSemaphoreTake(semaphore_id, ticks) != pdTRUE) {
return osErrorOS;
}
return osOK;
}
/**
* @brief Release a Semaphore token
* @param semaphore_id semaphore object referenced with \ref osSemaphore.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osSemaphoreRelease shall be consistent in every CMSIS-RTOS.
*/
osStatus osSemaphoreRelease (osSemaphoreId semaphore_id)
{
osStatus result = osOK;
portBASE_TYPE taskWoken = pdFALSE;
if (inHandlerMode()) {
if (xSemaphoreGiveFromISR(semaphore_id, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xSemaphoreGive(semaphore_id) != pdTRUE) {
result = osErrorOS;
}
}
return result;
}
/**
* @brief Delete a Semaphore
* @param semaphore_id semaphore object referenced with \ref osSemaphore.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osSemaphoreDelete shall be consistent in every CMSIS-RTOS.
*/
osStatus osSemaphoreDelete (osSemaphoreId semaphore_id)
{
if (inHandlerMode()) {
return osErrorISR;
}
vSemaphoreDelete(semaphore_id);
return osOK;
}
#endif /* Use Semaphores */
/******************* Memory Pool Management Functions ***********************/
#if (defined (osFeature_Pool) && (osFeature_Pool != 0))
//TODO
//This is a primitive and inefficient wrapper around the existing FreeRTOS memory management.
//A better implementation will have to modify heap_x.c!
typedef struct os_pool_cb {
void *pool;
uint8_t *markers;
uint32_t pool_sz;
uint32_t item_sz;
uint32_t currentIndex;
} os_pool_cb_t;
/**
* @brief Create and Initialize a memory pool
* @param pool_def memory pool definition referenced with \ref osPool.
* @retval memory pool ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osPoolCreate shall be consistent in every CMSIS-RTOS.
*/
osPoolId osPoolCreate (const osPoolDef_t *pool_def)
{
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
osPoolId thePool;
int itemSize = 4 * ((pool_def->item_sz + 3) / 4);
uint32_t i;
/* First have to allocate memory for the pool control block. */
thePool = pvPortMalloc(sizeof(os_pool_cb_t));
if (thePool) {
thePool->pool_sz = pool_def->pool_sz;
thePool->item_sz = itemSize;
thePool->currentIndex = 0;
/* Memory for markers */
thePool->markers = pvPortMalloc(pool_def->pool_sz);
if (thePool->markers) {
/* Now allocate the pool itself. */
thePool->pool = pvPortMalloc(pool_def->pool_sz * itemSize);
if (thePool->pool) {
for (i = 0; i < pool_def->pool_sz; i++) {
thePool->markers[i] = 0;
}
}
else {
vPortFree(thePool->markers);
vPortFree(thePool);
thePool = NULL;
}
}
else {
vPortFree(thePool);
thePool = NULL;
}
}
return thePool;
#else
return NULL;
#endif
}
/**
* @brief Allocate a memory block from a memory pool
* @param pool_id memory pool ID obtain referenced with \ref osPoolCreate.
* @retval address of the allocated memory block or NULL in case of no memory available.
* @note MUST REMAIN UNCHANGED: \b osPoolAlloc shall be consistent in every CMSIS-RTOS.
*/
void *osPoolAlloc (osPoolId pool_id)
{
int dummy = 0;
void *p = NULL;
uint32_t i;
uint32_t index;
if (inHandlerMode()) {
dummy = portSET_INTERRUPT_MASK_FROM_ISR();
}
else {
vPortEnterCritical();
}
for (i = 0; i < pool_id->pool_sz; i++) {
index = pool_id->currentIndex + i;
if (index >= pool_id->pool_sz) {
index = 0;
}
if (pool_id->markers[index] == 0) {
pool_id->markers[index] = 1;
p = (void *)((uint32_t)(pool_id->pool) + (index * pool_id->item_sz));
pool_id->currentIndex = index;
break;
}
}
if (inHandlerMode()) {
portCLEAR_INTERRUPT_MASK_FROM_ISR(dummy);
}
else {
vPortExitCritical();
}
return p;
}
/**
* @brief Allocate a memory block from a memory pool and set memory block to zero
* @param pool_id memory pool ID obtain referenced with \ref osPoolCreate.
* @retval address of the allocated memory block or NULL in case of no memory available.
* @note MUST REMAIN UNCHANGED: \b osPoolCAlloc shall be consistent in every CMSIS-RTOS.
*/
void *osPoolCAlloc (osPoolId pool_id)
{
void *p = osPoolAlloc(pool_id);
if (p != NULL)
{
memset(p, 0, sizeof(pool_id->pool_sz));
}
return p;
}
/**
* @brief Return an allocated memory block back to a specific memory pool
* @param pool_id memory pool ID obtain referenced with \ref osPoolCreate.
* @param block address of the allocated memory block that is returned to the memory pool.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osPoolFree shall be consistent in every CMSIS-RTOS.
*/
osStatus osPoolFree (osPoolId pool_id, void *block)
{
uint32_t index;
if (pool_id == NULL) {
return osErrorParameter;
}
if (block == NULL) {
return osErrorParameter;
}
if (block < pool_id->pool) {
return osErrorParameter;
}
index = (uint32_t)block - (uint32_t)(pool_id->pool);
if (index % pool_id->item_sz) {
return osErrorParameter;
}
index = index / pool_id->item_sz;
if (index >= pool_id->pool_sz) {
return osErrorParameter;
}
pool_id->markers[index] = 0;
return osOK;
}
#endif /* Use Memory Pool Management */
/******************* Message Queue Management Functions *********************/
#if (defined (osFeature_MessageQ) && (osFeature_MessageQ != 0)) /* Use Message Queues */
/**
* @brief Create and Initialize a Message Queue
* @param queue_def queue definition referenced with \ref osMessageQ.
* @param thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
* @retval message queue ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osMessageCreate shall be consistent in every CMSIS-RTOS.
*/
osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id)
{
(void) thread_id;
#if( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
if ((queue_def->buffer != NULL) && (queue_def->controlblock != NULL)) {
return xQueueCreateStatic(queue_def->queue_sz, queue_def->item_sz, queue_def->buffer, queue_def->controlblock);
}
else {
return xQueueCreate(queue_def->queue_sz, queue_def->item_sz);
}
#elif ( configSUPPORT_STATIC_ALLOCATION == 1 )
return xQueueCreateStatic(queue_def->queue_sz, queue_def->item_sz, queue_def->buffer, queue_def->controlblock);
#else
return xQueueCreate(queue_def->queue_sz, queue_def->item_sz);
#endif
}
/**
* @brief Put a Message to a Queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @param info message information.
* @param millisec timeout value or 0 in case of no time-out.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMessagePut shall be consistent in every CMSIS-RTOS.
*/
osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec)
{
portBASE_TYPE taskWoken = pdFALSE;
TickType_t ticks;
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
if (inHandlerMode()) {
if (xQueueSendFromISR(queue_id, &info, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xQueueSend(queue_id, &info, ticks) != pdTRUE) {
return osErrorOS;
}
}
return osOK;
}
/**
* @brief Get a Message or Wait for a Message from a Queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval event information that includes status code.
* @note MUST REMAIN UNCHANGED: \b osMessageGet shall be consistent in every CMSIS-RTOS.
*/
osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec)
{
portBASE_TYPE taskWoken;
TickType_t ticks;
osEvent event;
event.def.message_id = queue_id;
event.value.v = 0;
if (queue_id == NULL) {
event.status = osErrorParameter;
return event;
}
taskWoken = pdFALSE;
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (inHandlerMode()) {
if (xQueueReceiveFromISR(queue_id, &event.value.v, &taskWoken) == pdTRUE) {
/* We have mail */
event.status = osEventMessage;
}
else {
event.status = osOK;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xQueueReceive(queue_id, &event.value.v, ticks) == pdTRUE) {
/* We have mail */
event.status = osEventMessage;
}
else {
event.status = (ticks == 0) ? osOK : osEventTimeout;
}
}
return event;
}
#endif /* Use Message Queues */
/******************** Mail Queue Management Functions ***********************/
#if (defined (osFeature_MailQ) && (osFeature_MailQ != 0)) /* Use Mail Queues */
typedef struct os_mailQ_cb {
const osMailQDef_t *queue_def;
QueueHandle_t handle;
osPoolId pool;
} os_mailQ_cb_t;
/**
* @brief Create and Initialize mail queue
* @param queue_def reference to the mail queue definition obtain with \ref osMailQ
* @param thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
* @retval mail queue ID for reference by other functions or NULL in case of error.
* @note MUST REMAIN UNCHANGED: \b osMailCreate shall be consistent in every CMSIS-RTOS.
*/
osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id)
{
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
(void) thread_id;
osPoolDef_t pool_def = {queue_def->queue_sz, queue_def->item_sz, NULL};
/* Create a mail queue control block */
*(queue_def->cb) = pvPortMalloc(sizeof(struct os_mailQ_cb));
if (*(queue_def->cb) == NULL) {
return NULL;
}
(*(queue_def->cb))->queue_def = queue_def;
/* Create a queue in FreeRTOS */
(*(queue_def->cb))->handle = xQueueCreate(queue_def->queue_sz, sizeof(void *));
if ((*(queue_def->cb))->handle == NULL) {
vPortFree(*(queue_def->cb));
return NULL;
}
/* Create a mail pool */
(*(queue_def->cb))->pool = osPoolCreate(&pool_def);
if ((*(queue_def->cb))->pool == NULL) {
//TODO: Delete queue. How to do it in FreeRTOS?
vPortFree(*(queue_def->cb));
return NULL;
}
return *(queue_def->cb);
#else
return NULL;
#endif
}
/**
* @brief Allocate a memory block from a mail
* @param queue_id mail queue ID obtained with \ref osMailCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval pointer to memory block that can be filled with mail or NULL in case error.
* @note MUST REMAIN UNCHANGED: \b osMailAlloc shall be consistent in every CMSIS-RTOS.
*/
void *osMailAlloc (osMailQId queue_id, uint32_t millisec)
{
(void) millisec;
void *p;
if (queue_id == NULL) {
return NULL;
}
p = osPoolAlloc(queue_id->pool);
return p;
}
/**
* @brief Allocate a memory block from a mail and set memory block to zero
* @param queue_id mail queue ID obtained with \ref osMailCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval pointer to memory block that can be filled with mail or NULL in case error.
* @note MUST REMAIN UNCHANGED: \b osMailCAlloc shall be consistent in every CMSIS-RTOS.
*/
void *osMailCAlloc (osMailQId queue_id, uint32_t millisec)
{
uint32_t i;
void *p = osMailAlloc(queue_id, millisec);
if (p) {
for (i = 0; i < queue_id->queue_def->item_sz; i++) {
((uint8_t *)p)[i] = 0;
}
}
return p;
}
/**
* @brief Put a mail to a queue
* @param queue_id mail queue ID obtained with \ref osMailCreate.
* @param mail memory block previously allocated with \ref osMailAlloc or \ref osMailCAlloc.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMailPut shall be consistent in every CMSIS-RTOS.
*/
osStatus osMailPut (osMailQId queue_id, void *mail)
{
portBASE_TYPE taskWoken;
if (queue_id == NULL) {
return osErrorParameter;
}
taskWoken = pdFALSE;
if (inHandlerMode()) {
if (xQueueSendFromISR(queue_id->handle, &mail, &taskWoken) != pdTRUE) {
return osErrorOS;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xQueueSend(queue_id->handle, &mail, 0) != pdTRUE) {
return osErrorOS;
}
}
return osOK;
}
/**
* @brief Get a mail from a queue
* @param queue_id mail queue ID obtained with \ref osMailCreate.
* @param millisec timeout value or 0 in case of no time-out
* @retval event that contains mail information or error code.
* @note MUST REMAIN UNCHANGED: \b osMailGet shall be consistent in every CMSIS-RTOS.
*/
osEvent osMailGet (osMailQId queue_id, uint32_t millisec)
{
portBASE_TYPE taskWoken;
TickType_t ticks;
osEvent event;
event.def.mail_id = queue_id;
if (queue_id == NULL) {
event.status = osErrorParameter;
return event;
}
taskWoken = pdFALSE;
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (inHandlerMode()) {
if (xQueueReceiveFromISR(queue_id->handle, &event.value.p, &taskWoken) == pdTRUE) {
/* We have mail */
event.status = osEventMail;
}
else {
event.status = osOK;
}
portEND_SWITCHING_ISR(taskWoken);
}
else {
if (xQueueReceive(queue_id->handle, &event.value.p, ticks) == pdTRUE) {
/* We have mail */
event.status = osEventMail;
}
else {
event.status = (ticks == 0) ? osOK : osEventTimeout;
}
}
return event;
}
/**
* @brief Free a memory block from a mail
* @param queue_id mail queue ID obtained with \ref osMailCreate.
* @param mail pointer to the memory block that was obtained with \ref osMailGet.
* @retval status code that indicates the execution status of the function.
* @note MUST REMAIN UNCHANGED: \b osMailFree shall be consistent in every CMSIS-RTOS.
*/
osStatus osMailFree (osMailQId queue_id, void *mail)
{
if (queue_id == NULL) {
return osErrorParameter;
}
return osPoolFree(queue_id->pool, mail);
}
#endif /* Use Mail Queues */
/*************************** Additional specific APIs to Free RTOS ************/
/**
* @brief Handles the tick increment
* @param none.
* @retval none.
*/
void osSystickHandler(void)
{
#if (INCLUDE_xTaskGetSchedulerState == 1 )
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
{
#endif /* INCLUDE_xTaskGetSchedulerState */
xPortSysTickHandler();
#if (INCLUDE_xTaskGetSchedulerState == 1 )
}
#endif /* INCLUDE_xTaskGetSchedulerState */
}
#if ( INCLUDE_eTaskGetState == 1 )
/**
* @brief Obtain the state of any thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval the stae of the thread, states are encoded by the osThreadState enumerated type.
*/
osThreadState osThreadGetState(osThreadId thread_id)
{
eTaskState ThreadState;
osThreadState result;
ThreadState = eTaskGetState(thread_id);
switch (ThreadState)
{
case eRunning :
result = osThreadRunning;
break;
case eReady :
result = osThreadReady;
break;
case eBlocked :
result = osThreadBlocked;
break;
case eSuspended :
result = osThreadSuspended;
break;
case eDeleted :
result = osThreadDeleted;
break;
default:
result = osThreadError;
}
return result;
}
#endif /* INCLUDE_eTaskGetState */
#if (INCLUDE_eTaskGetState == 1)
/**
* @brief Check if a thread is already suspended or not.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadIsSuspended(osThreadId thread_id)
{
if (eTaskGetState(thread_id) == eSuspended)
return osOK;
else
return osErrorOS;
}
#endif /* INCLUDE_eTaskGetState */
/**
* @brief Suspend execution of a thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadSuspend (osThreadId thread_id)
{
#if (INCLUDE_vTaskSuspend == 1)
vTaskSuspend(thread_id);
return osOK;
#else
return osErrorResource;
#endif
}
/**
* @brief Resume execution of a suspended thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadResume (osThreadId thread_id)
{
#if (INCLUDE_vTaskSuspend == 1)
if(inHandlerMode())
{
if (xTaskResumeFromISR(thread_id) == pdTRUE)
{
portYIELD_FROM_ISR(pdTRUE);
}
}
else
{
vTaskResume(thread_id);
}
return osOK;
#else
return osErrorResource;
#endif
}
/**
* @brief Suspend execution of a all active threads.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadSuspendAll (void)
{
vTaskSuspendAll();
return osOK;
}
/**
* @brief Resume execution of a all suspended threads.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadResumeAll (void)
{
if (xTaskResumeAll() == pdTRUE)
return osOK;
else
return osErrorOS;
}
/**
* @brief Delay a task until a specified time
* @param PreviousWakeTime Pointer to a variable that holds the time at which the
* task was last unblocked. PreviousWakeTime must be initialised with the current time
* prior to its first use (PreviousWakeTime = osKernelSysTick() )
* @param millisec time delay value
* @retval status code that indicates the execution status of the function.
*/
osStatus osDelayUntil (uint32_t *PreviousWakeTime, uint32_t millisec)
{
#if INCLUDE_vTaskDelayUntil
TickType_t ticks = (millisec / portTICK_PERIOD_MS);
vTaskDelayUntil((TickType_t *) PreviousWakeTime, ticks ? ticks : 1);
return osOK;
#else
(void) millisec;
(void) PreviousWakeTime;
return osErrorResource;
#endif
}
/**
* @brief Abort the delay for a specific thread
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId
* @retval status code that indicates the execution status of the function.
*/
osStatus osAbortDelay(osThreadId thread_id)
{
#if INCLUDE_xTaskAbortDelay
xTaskAbortDelay(thread_id);
return osOK;
#else
(void) thread_id;
return osErrorResource;
#endif
}
/**
* @brief Lists all the current threads, along with their current state
* and stack usage high water mark.
* @param buffer A buffer into which the above mentioned details
* will be written
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadList (uint8_t *buffer)
{
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) )
vTaskList((char *)buffer);
#endif
return osOK;
}
/**
* @brief Receive an item from a queue without removing the item from the queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval event information that includes status code.
*/
osEvent osMessagePeek (osMessageQId queue_id, uint32_t millisec)
{
TickType_t ticks;
osEvent event;
event.def.message_id = queue_id;
if (queue_id == NULL) {
event.status = osErrorParameter;
return event;
}
ticks = 0;
if (millisec == osWaitForever) {
ticks = portMAX_DELAY;
}
else if (millisec != 0) {
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0) {
ticks = 1;
}
}
if (xQueuePeek(queue_id, &event.value.v, ticks) == pdTRUE)
{
/* We have mail */
event.status = osEventMessage;
}
else
{
event.status = (ticks == 0) ? osOK : osEventTimeout;
}
return event;
}
/**
* @brief Get the number of messaged stored in a queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval number of messages stored in a queue.
*/
uint32_t osMessageWaiting(osMessageQId queue_id)
{
if (inHandlerMode()) {
return uxQueueMessagesWaitingFromISR(queue_id);
}
else
{
return uxQueueMessagesWaiting(queue_id);
}
}
/**
* @brief Get the available space in a message queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval available space in a message queue.
*/
uint32_t osMessageAvailableSpace(osMessageQId queue_id)
{
return uxQueueSpacesAvailable(queue_id);
}
/**
* @brief Delete a Message Queue
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval status code that indicates the execution status of the function.
*/
osStatus osMessageDelete (osMessageQId queue_id)
{
if (inHandlerMode()) {
return osErrorISR;
}
vQueueDelete(queue_id);
return osOK;
}
/**
* @brief Create and Initialize a Recursive Mutex
* @param mutex_def mutex definition referenced with \ref osMutex.
* @retval mutex ID for reference by other functions or NULL in case of error..
*/
osMutexId osRecursiveMutexCreate (const osMutexDef_t *mutex_def)
{
#if (configUSE_RECURSIVE_MUTEXES == 1)
#if( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
if (mutex_def->controlblock != NULL){
return xSemaphoreCreateRecursiveMutexStatic( mutex_def->controlblock );
}
else {
return xSemaphoreCreateRecursiveMutex();
}
#elif ( configSUPPORT_STATIC_ALLOCATION == 1 )
return xSemaphoreCreateRecursiveMutexStatic( mutex_def->controlblock );
#else
return xSemaphoreCreateRecursiveMutex();
#endif
#else
return NULL;
#endif
}
/**
* @brief Release a Recursive Mutex
* @param mutex_id mutex ID obtained by \ref osRecursiveMutexCreate.
* @retval status code that indicates the execution status of the function.
*/
osStatus osRecursiveMutexRelease (osMutexId mutex_id)
{
#if (configUSE_RECURSIVE_MUTEXES == 1)
osStatus result = osOK;
if (xSemaphoreGiveRecursive(mutex_id) != pdTRUE)
{
result = osErrorOS;
}
return result;
#else
return osErrorResource;
#endif
}
/**
* @brief Release a Recursive Mutex
* @param mutex_id mutex ID obtained by \ref osRecursiveMutexCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval status code that indicates the execution status of the function.
*/
osStatus osRecursiveMutexWait (osMutexId mutex_id, uint32_t millisec)
{
#if (configUSE_RECURSIVE_MUTEXES == 1)
TickType_t ticks;
if (mutex_id == NULL)
{
return osErrorParameter;
}
ticks = 0;
if (millisec == osWaitForever)
{
ticks = portMAX_DELAY;
}
else if (millisec != 0)
{
ticks = millisec / portTICK_PERIOD_MS;
if (ticks == 0)
{
ticks = 1;
}
}
if (xSemaphoreTakeRecursive(mutex_id, ticks) != pdTRUE)
{
return osErrorOS;
}
return osOK;
#else
return osErrorResource;
#endif
}
/**
* @brief Returns the current count value of a counting semaphore
* @param semaphore_id semaphore_id ID obtained by \ref osSemaphoreCreate.
* @retval count value
*/
uint32_t osSemaphoreGetCount(osSemaphoreId semaphore_id)
{
return uxSemaphoreGetCount(semaphore_id);
}
/* ----------------------------------------------------------------------
* $Date: 5. February 2013
* $Revision: V1.02
*
* Project: CMSIS-RTOS API
* Title: cmsis_os.h header file
*
* Version 0.02
* Initial Proposal Phase
* Version 0.03
* osKernelStart added, optional feature: main started as thread
* osSemaphores have standard behavior
* osTimerCreate does not start the timer, added osTimerStart
* osThreadPass is renamed to osThreadYield
* Version 1.01
* Support for C++ interface
* - const attribute removed from the osXxxxDef_t typedef's
* - const attribute added to the osXxxxDef macros
* Added: osTimerDelete, osMutexDelete, osSemaphoreDelete
* Added: osKernelInitialize
* Version 1.02
* Control functions for short timeouts in microsecond resolution:
* Added: osKernelSysTick, osKernelSysTickFrequency, osKernelSysTickMicroSec
* Removed: osSignalGet
*
*
*----------------------------------------------------------------------------
*
* Portions Copyright © 2016 STMicroelectronics International N.V. All rights reserved.
* Portions Copyright (c) 2013 ARM LIMITED
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*---------------------------------------------------------------------------*/
/**
******************************************************************************
* @file cmsis_os.h
* @author MCD Application Team
* @date 13-July-2017
* @brief Header of cmsis_os.c
* A new set of APIs are added in addition to existing ones, these APIs
* are specific to FreeRTOS.
******************************************************************************
* @attention
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "queue.h"
#include "semphr.h"
#include "event_groups.h"
/**
\page cmsis_os_h Header File Template: cmsis_os.h
The file \b cmsis_os.h is a template header file for a CMSIS-RTOS compliant Real-Time Operating System (RTOS).
Each RTOS that is compliant with CMSIS-RTOS shall provide a specific \b cmsis_os.h header file that represents
its implementation.
The file cmsis_os.h contains:
- CMSIS-RTOS API function definitions
- struct definitions for parameters and return types
- status and priority values used by CMSIS-RTOS API functions
- macros for defining threads and other kernel objects
<b>Name conventions and header file modifications</b>
All definitions are prefixed with \b os to give an unique name space for CMSIS-RTOS functions.
Definitions that are prefixed \b os_ are not used in the application code but local to this header file.
All definitions and functions that belong to a module are grouped and have a common prefix, i.e. \b osThread.
Definitions that are marked with <b>CAN BE CHANGED</b> can be adapted towards the needs of the actual CMSIS-RTOS implementation.
These definitions can be specific to the underlying RTOS kernel.
Definitions that are marked with <b>MUST REMAIN UNCHANGED</b> cannot be altered. Otherwise the CMSIS-RTOS implementation is no longer
compliant to the standard. Note that some functions are optional and need not to be provided by every CMSIS-RTOS implementation.
<b>Function calls from interrupt service routines</b>
The following CMSIS-RTOS functions can be called from threads and interrupt service routines (ISR):
- \ref osSignalSet
- \ref osSemaphoreRelease
- \ref osPoolAlloc, \ref osPoolCAlloc, \ref osPoolFree
- \ref osMessagePut, \ref osMessageGet
- \ref osMailAlloc, \ref osMailCAlloc, \ref osMailGet, \ref osMailPut, \ref osMailFree
Functions that cannot be called from an ISR are verifying the interrupt status and return in case that they are called
from an ISR context the status code \b osErrorISR. In some implementations this condition might be caught using the HARD FAULT vector.
Some CMSIS-RTOS implementations support CMSIS-RTOS function calls from multiple ISR at the same time.
If this is impossible, the CMSIS-RTOS rejects calls by nested ISR functions with the status code \b osErrorISRRecursive.
<b>Define and reference object definitions</b>
With <b>\#define osObjectsExternal</b> objects are defined as external symbols. This allows to create a consistent header file
that is used throughout a project as shown below:
<i>Header File</i>
\code
#include <cmsis_os.h> // CMSIS RTOS header file
// Thread definition
extern void thread_sample (void const *argument); // function prototype
osThreadDef (thread_sample, osPriorityBelowNormal, 1, 100);
// Pool definition
osPoolDef(MyPool, 10, long);
\endcode
This header file defines all objects when included in a C/C++ source file. When <b>\#define osObjectsExternal</b> is
present before the header file, the objects are defined as external symbols. A single consistent header file can therefore be
used throughout the whole project.
<i>Example</i>
\code
#include "osObjects.h" // Definition of the CMSIS-RTOS objects
\endcode
\code
#define osObjectExternal // Objects will be defined as external symbols
#include "osObjects.h" // Reference to the CMSIS-RTOS objects
\endcode
*/
#ifndef _CMSIS_OS_H
#define _CMSIS_OS_H
/// \note MUST REMAIN UNCHANGED: \b osCMSIS identifies the CMSIS-RTOS API version.
#define osCMSIS 0x10002 ///< API version (main [31:16] .sub [15:0])
/// \note CAN BE CHANGED: \b osCMSIS_KERNEL identifies the underlying RTOS kernel and version number.
#define osCMSIS_KERNEL 0x10000 ///< RTOS identification and version (main [31:16] .sub [15:0])
/// \note MUST REMAIN UNCHANGED: \b osKernelSystemId shall be consistent in every CMSIS-RTOS.
#define osKernelSystemId "KERNEL V1.00" ///< RTOS identification string
/// \note MUST REMAIN UNCHANGED: \b osFeature_xxx shall be consistent in every CMSIS-RTOS.
#define osFeature_MainThread 1 ///< main thread 1=main can be thread, 0=not available
#define osFeature_Pool 1 ///< Memory Pools: 1=available, 0=not available
#define osFeature_MailQ 1 ///< Mail Queues: 1=available, 0=not available
#define osFeature_MessageQ 1 ///< Message Queues: 1=available, 0=not available
#define osFeature_Signals 8 ///< maximum number of Signal Flags available per thread
#define osFeature_Semaphore 1 ///< osFeature_Semaphore function: 1=available, 0=not available
#define osFeature_Wait 0 ///< osWait function: 1=available, 0=not available
#define osFeature_SysTick 1 ///< osKernelSysTick functions: 1=available, 0=not available
#ifdef __cplusplus
extern "C"
{
#endif
// ==== Enumeration, structures, defines ====
/// Priority used for thread control.
/// \note MUST REMAIN UNCHANGED: \b osPriority shall be consistent in every CMSIS-RTOS.
typedef enum {
osPriorityIdle = -3, ///< priority: idle (lowest)
osPriorityLow = -2, ///< priority: low
osPriorityBelowNormal = -1, ///< priority: below normal
osPriorityNormal = 0, ///< priority: normal (default)
osPriorityAboveNormal = +1, ///< priority: above normal
osPriorityHigh = +2, ///< priority: high
osPriorityRealtime = +3, ///< priority: realtime (highest)
osPriorityError = 0x84 ///< system cannot determine priority or thread has illegal priority
} osPriority;
/// Timeout value.
/// \note MUST REMAIN UNCHANGED: \b osWaitForever shall be consistent in every CMSIS-RTOS.
#define osWaitForever 0xFFFFFFFF ///< wait forever timeout value
/// Status code values returned by CMSIS-RTOS functions.
/// \note MUST REMAIN UNCHANGED: \b osStatus shall be consistent in every CMSIS-RTOS.
typedef enum {
osOK = 0, ///< function completed; no error or event occurred.
osEventSignal = 0x08, ///< function completed; signal event occurred.
osEventMessage = 0x10, ///< function completed; message event occurred.
osEventMail = 0x20, ///< function completed; mail event occurred.
osEventTimeout = 0x40, ///< function completed; timeout occurred.
osErrorParameter = 0x80, ///< parameter error: a mandatory parameter was missing or specified an incorrect object.
osErrorResource = 0x81, ///< resource not available: a specified resource was not available.
osErrorTimeoutResource = 0xC1, ///< resource not available within given time: a specified resource was not available within the timeout period.
osErrorISR = 0x82, ///< not allowed in ISR context: the function cannot be called from interrupt service routines.
osErrorISRRecursive = 0x83, ///< function called multiple times from ISR with same object.
osErrorPriority = 0x84, ///< system cannot determine priority or thread has illegal priority.
osErrorNoMemory = 0x85, ///< system is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorValue = 0x86, ///< value of a parameter is out of range.
osErrorOS = 0xFF, ///< unspecified RTOS error: run-time error but no other error message fits.
os_status_reserved = 0x7FFFFFFF ///< prevent from enum down-size compiler optimization.
} osStatus;
#if ( INCLUDE_eTaskGetState == 1 )
/* Thread state returned by osThreadGetState */
typedef enum {
osThreadRunning = 0x0, /* A thread is querying the state of itself, so must be running. */
osThreadReady = 0x1 , /* The thread being queried is in a read or pending ready list. */
osThreadBlocked = 0x2, /* The thread being queried is in the Blocked state. */
osThreadSuspended = 0x3, /* The thread being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
osThreadDeleted = 0x4, /* The thread being queried has been deleted, but its TCB has not yet been freed. */
osThreadError = 0x7FFFFFFF
} osThreadState;
#endif /* INCLUDE_eTaskGetState */
/// Timer type value for the timer definition.
/// \note MUST REMAIN UNCHANGED: \b os_timer_type shall be consistent in every CMSIS-RTOS.
typedef enum {
osTimerOnce = 0, ///< one-shot timer
osTimerPeriodic = 1 ///< repeating timer
} os_timer_type;
/// Entry point of a thread.
/// \note MUST REMAIN UNCHANGED: \b os_pthread shall be consistent in every CMSIS-RTOS.
typedef void (*os_pthread) (void const *argument);
/// Entry point of a timer call back function.
/// \note MUST REMAIN UNCHANGED: \b os_ptimer shall be consistent in every CMSIS-RTOS.
typedef void (*os_ptimer) (void const *argument);
// >>> the following data type definitions may shall adapted towards a specific RTOS
/// Thread ID identifies the thread (pointer to a thread control block).
/// \note CAN BE CHANGED: \b os_thread_cb is implementation specific in every CMSIS-RTOS.
typedef TaskHandle_t osThreadId;
/// Timer ID identifies the timer (pointer to a timer control block).
/// \note CAN BE CHANGED: \b os_timer_cb is implementation specific in every CMSIS-RTOS.
typedef TimerHandle_t osTimerId;
/// Mutex ID identifies the mutex (pointer to a mutex control block).
/// \note CAN BE CHANGED: \b os_mutex_cb is implementation specific in every CMSIS-RTOS.
typedef SemaphoreHandle_t osMutexId;
/// Semaphore ID identifies the semaphore (pointer to a semaphore control block).
/// \note CAN BE CHANGED: \b os_semaphore_cb is implementation specific in every CMSIS-RTOS.
typedef SemaphoreHandle_t osSemaphoreId;
/// Pool ID identifies the memory pool (pointer to a memory pool control block).
/// \note CAN BE CHANGED: \b os_pool_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_cb *osPoolId;
/// Message ID identifies the message queue (pointer to a message queue control block).
/// \note CAN BE CHANGED: \b os_messageQ_cb is implementation specific in every CMSIS-RTOS.
typedef QueueHandle_t osMessageQId;
/// Mail ID identifies the mail queue (pointer to a mail queue control block).
/// \note CAN BE CHANGED: \b os_mailQ_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_cb *osMailQId;
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
typedef StaticTask_t osStaticThreadDef_t;
typedef StaticTimer_t osStaticTimerDef_t;
typedef StaticSemaphore_t osStaticMutexDef_t;
typedef StaticSemaphore_t osStaticSemaphoreDef_t;
typedef StaticQueue_t osStaticMessageQDef_t;
#endif
/// Thread Definition structure contains startup information of a thread.
/// \note CAN BE CHANGED: \b os_thread_def is implementation specific in every CMSIS-RTOS.
typedef struct os_thread_def {
char *name; ///< Thread name
os_pthread pthread; ///< start address of thread function
osPriority tpriority; ///< initial thread priority
uint32_t instances; ///< maximum number of instances of that thread function
uint32_t stacksize; ///< stack size requirements in bytes; 0 is default stack size
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
uint32_t *buffer; ///< stack buffer for static allocation; NULL for dynamic allocation
osStaticThreadDef_t *controlblock; ///< control block to hold thread's data for static allocation; NULL for dynamic allocation
#endif
} osThreadDef_t;
/// Timer Definition structure contains timer parameters.
/// \note CAN BE CHANGED: \b os_timer_def is implementation specific in every CMSIS-RTOS.
typedef struct os_timer_def {
os_ptimer ptimer; ///< start address of a timer function
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
osStaticTimerDef_t *controlblock; ///< control block to hold timer's data for static allocation; NULL for dynamic allocation
#endif
} osTimerDef_t;
/// Mutex Definition structure contains setup information for a mutex.
/// \note CAN BE CHANGED: \b os_mutex_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mutex_def {
uint32_t dummy; ///< dummy value.
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
osStaticMutexDef_t *controlblock; ///< control block for static allocation; NULL for dynamic allocation
#endif
} osMutexDef_t;
/// Semaphore Definition structure contains setup information for a semaphore.
/// \note CAN BE CHANGED: \b os_semaphore_def is implementation specific in every CMSIS-RTOS.
typedef struct os_semaphore_def {
uint32_t dummy; ///< dummy value.
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
osStaticSemaphoreDef_t *controlblock; ///< control block for static allocation; NULL for dynamic allocation
#endif
} osSemaphoreDef_t;
/// Definition structure for memory block allocation.
/// \note CAN BE CHANGED: \b os_pool_def is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_def {
uint32_t pool_sz; ///< number of items (elements) in the pool
uint32_t item_sz; ///< size of an item
void *pool; ///< pointer to memory for pool
} osPoolDef_t;
/// Definition structure for message queue.
/// \note CAN BE CHANGED: \b os_messageQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_messageQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
uint8_t *buffer; ///< buffer for static allocation; NULL for dynamic allocation
osStaticMessageQDef_t *controlblock; ///< control block to hold queue's data for static allocation; NULL for dynamic allocation
#endif
//void *pool; ///< memory array for messages
} osMessageQDef_t;
/// Definition structure for mail queue.
/// \note CAN BE CHANGED: \b os_mailQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
struct os_mailQ_cb **cb;
} osMailQDef_t;
/// Event structure contains detailed information about an event.
/// \note MUST REMAIN UNCHANGED: \b os_event shall be consistent in every CMSIS-RTOS.
/// However the struct may be extended at the end.
typedef struct {
osStatus status; ///< status code: event or error information
union {
uint32_t v; ///< message as 32-bit value
void *p; ///< message or mail as void pointer
int32_t signals; ///< signal flags
} value; ///< event value
union {
osMailQId mail_id; ///< mail id obtained by \ref osMailCreate
osMessageQId message_id; ///< message id obtained by \ref osMessageCreate
} def; ///< event definition
} osEvent;
// ==== Kernel Control Functions ====
/// Initialize the RTOS Kernel for creating objects.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelInitialize shall be consistent in every CMSIS-RTOS.
osStatus osKernelInitialize (void);
/// Start the RTOS Kernel.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelStart shall be consistent in every CMSIS-RTOS.
osStatus osKernelStart (void);
/// Check if the RTOS kernel is already started.
/// \note MUST REMAIN UNCHANGED: \b osKernelRunning shall be consistent in every CMSIS-RTOS.
/// \return 0 RTOS is not started, 1 RTOS is started.
int32_t osKernelRunning(void);
#if (defined (osFeature_SysTick) && (osFeature_SysTick != 0)) // System Timer available
/// Get the RTOS kernel system timer counter
/// \note MUST REMAIN UNCHANGED: \b osKernelSysTick shall be consistent in every CMSIS-RTOS.
/// \return RTOS kernel system timer as 32-bit value
uint32_t osKernelSysTick (void);
/// The RTOS kernel system timer frequency in Hz
/// \note Reflects the system timer setting and is typically defined in a configuration file.
#define osKernelSysTickFrequency (configTICK_RATE_HZ)
/// Convert a microseconds value to a RTOS kernel system timer value.
/// \param microsec time value in microseconds.
/// \return time value normalized to the \ref osKernelSysTickFrequency
#define osKernelSysTickMicroSec(microsec) (((uint64_t)microsec * (osKernelSysTickFrequency)) / 1000000)
#endif // System Timer available
// ==== Thread Management ====
/// Create a Thread Definition with function, priority, and stack requirements.
/// \param name name of the thread function.
/// \param priority initial priority of the thread function.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (in bytes) requirements for the thread function.
/// \note CAN BE CHANGED: The parameters to \b osThreadDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osThreadDef(name, thread, priority, instances, stacksz) \
extern const osThreadDef_t os_thread_def_##name
#else // define the object
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define osThreadDef(name, thread, priority, instances, stacksz) \
const osThreadDef_t os_thread_def_##name = \
{ #name, (thread), (priority), (instances), (stacksz), NULL, NULL }
#define osThreadStaticDef(name, thread, priority, instances, stacksz, buffer, control) \
const osThreadDef_t os_thread_def_##name = \
{ #name, (thread), (priority), (instances), (stacksz), (buffer), (control) }
#else //configSUPPORT_STATIC_ALLOCATION == 0
#define osThreadDef(name, thread, priority, instances, stacksz) \
const osThreadDef_t os_thread_def_##name = \
{ #name, (thread), (priority), (instances), (stacksz)}
#endif
#endif
/// Access a Thread definition.
/// \param name name of the thread definition object.
/// \note CAN BE CHANGED: The parameter to \b osThread shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osThread(name) \
&os_thread_def_##name
/// Create a thread and add it to Active Threads and set it to state READY.
/// \param[in] thread_def thread definition referenced with \ref osThread.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadCreate shall be consistent in every CMSIS-RTOS.
osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument);
/// Return the thread ID of the current running thread.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetId shall be consistent in every CMSIS-RTOS.
osThreadId osThreadGetId (void);
/// Terminate execution of a thread and remove it from Active Threads.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadTerminate shall be consistent in every CMSIS-RTOS.
osStatus osThreadTerminate (osThreadId thread_id);
/// Pass control to next thread that is in state \b READY.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadYield shall be consistent in every CMSIS-RTOS.
osStatus osThreadYield (void);
/// Change priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] priority new priority value for the thread function.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadSetPriority shall be consistent in every CMSIS-RTOS.
osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority);
/// Get current priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return current priority value of the thread function.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetPriority shall be consistent in every CMSIS-RTOS.
osPriority osThreadGetPriority (osThreadId thread_id);
// ==== Generic Wait Functions ====
/// Wait for Timeout (Time Delay).
/// \param[in] millisec time delay value
/// \return status code that indicates the execution status of the function.
osStatus osDelay (uint32_t millisec);
#if (defined (osFeature_Wait) && (osFeature_Wait != 0)) // Generic Wait available
/// Wait for Signal, Message, Mail, or Timeout.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return event that contains signal, message, or mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osWait shall be consistent in every CMSIS-RTOS.
osEvent osWait (uint32_t millisec);
#endif // Generic Wait available
// ==== Timer Management Functions ====
/// Define a Timer object.
/// \param name name of the timer object.
/// \param function name of the timer call back function.
/// \note CAN BE CHANGED: The parameter to \b osTimerDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osTimerDef(name, function) \
extern const osTimerDef_t os_timer_def_##name
#else // define the object
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define osTimerDef(name, function) \
const osTimerDef_t os_timer_def_##name = \
{ (function), NULL }
#define osTimerStaticDef(name, function, control) \
const osTimerDef_t os_timer_def_##name = \
{ (function), (control) }
#else //configSUPPORT_STATIC_ALLOCATION == 0
#define osTimerDef(name, function) \
const osTimerDef_t os_timer_def_##name = \
{ (function) }
#endif
#endif
/// Access a Timer definition.
/// \param name name of the timer object.
/// \note CAN BE CHANGED: The parameter to \b osTimer shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osTimer(name) \
&os_timer_def_##name
/// Create a timer.
/// \param[in] timer_def timer object referenced with \ref osTimer.
/// \param[in] type osTimerOnce for one-shot or osTimerPeriodic for periodic behavior.
/// \param[in] argument argument to the timer call back function.
/// \return timer ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osTimerCreate shall be consistent in every CMSIS-RTOS.
osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument);
/// Start or restart a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \param[in] millisec time delay value of the timer.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStart shall be consistent in every CMSIS-RTOS.
osStatus osTimerStart (osTimerId timer_id, uint32_t millisec);
/// Stop the timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStop shall be consistent in every CMSIS-RTOS.
osStatus osTimerStop (osTimerId timer_id);
/// Delete a timer that was created by \ref osTimerCreate.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerDelete shall be consistent in every CMSIS-RTOS.
osStatus osTimerDelete (osTimerId timer_id);
// ==== Signal Management ====
/// Set the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that should be set.
/// \return osOK if successful, osErrorOS if failed.
/// \note MUST REMAIN UNCHANGED: \b osSignalSet shall be consistent in every CMSIS-RTOS.
int32_t osSignalSet (osThreadId thread_id, int32_t signals);
/// Clear the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that shall be cleared.
/// \return previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSignalClear shall be consistent in every CMSIS-RTOS.
int32_t osSignalClear (osThreadId thread_id, int32_t signals);
/// Wait for one or more Signal Flags to become signaled for the current \b RUNNING thread.
/// \param[in] signals wait until all specified signal flags set or 0 for any single signal flag.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return event flag information or error code.
/// \note MUST REMAIN UNCHANGED: \b osSignalWait shall be consistent in every CMSIS-RTOS.
osEvent osSignalWait (int32_t signals, uint32_t millisec);
// ==== Mutex Management ====
/// Define a Mutex.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutexDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMutexDef(name) \
extern const osMutexDef_t os_mutex_def_##name
#else // define the object
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define osMutexDef(name) \
const osMutexDef_t os_mutex_def_##name = { 0, NULL }
#define osMutexStaticDef(name, control) \
const osMutexDef_t os_mutex_def_##name = { 0, (control) }
#else //configSUPPORT_STATIC_ALLOCATION == 0
#define osMutexDef(name) \
const osMutexDef_t os_mutex_def_##name = { 0 }
#endif
#endif
/// Access a Mutex definition.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutex shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMutex(name) \
&os_mutex_def_##name
/// Create and Initialize a Mutex object.
/// \param[in] mutex_def mutex definition referenced with \ref osMutex.
/// \return mutex ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMutexCreate shall be consistent in every CMSIS-RTOS.
osMutexId osMutexCreate (const osMutexDef_t *mutex_def);
/// Wait until a Mutex becomes available.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexWait shall be consistent in every CMSIS-RTOS.
osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec);
/// Release a Mutex that was obtained by \ref osMutexWait.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexRelease shall be consistent in every CMSIS-RTOS.
osStatus osMutexRelease (osMutexId mutex_id);
/// Delete a Mutex that was created by \ref osMutexCreate.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexDelete shall be consistent in every CMSIS-RTOS.
osStatus osMutexDelete (osMutexId mutex_id);
// ==== Semaphore Management Functions ====
#if (defined (osFeature_Semaphore) && (osFeature_Semaphore != 0)) // Semaphore available
/// Define a Semaphore object.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphoreDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osSemaphoreDef(name) \
extern const osSemaphoreDef_t os_semaphore_def_##name
#else // define the object
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define osSemaphoreDef(name) \
const osSemaphoreDef_t os_semaphore_def_##name = { 0, NULL }
#define osSemaphoreStaticDef(name, control) \
const osSemaphoreDef_t os_semaphore_def_##name = { 0, (control) }
#else //configSUPPORT_STATIC_ALLOCATION == 0
#define osSemaphoreDef(name) \
const osSemaphoreDef_t os_semaphore_def_##name = { 0 }
#endif
#endif
/// Access a Semaphore definition.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphore shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osSemaphore(name) \
&os_semaphore_def_##name
/// Create and Initialize a Semaphore object used for managing resources.
/// \param[in] semaphore_def semaphore definition referenced with \ref osSemaphore.
/// \param[in] count number of available resources.
/// \return semaphore ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreCreate shall be consistent in every CMSIS-RTOS.
osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count);
/// Wait until a Semaphore token becomes available.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return number of available tokens, or -1 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreWait shall be consistent in every CMSIS-RTOS.
int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec);
/// Release a Semaphore token.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreRelease shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreRelease (osSemaphoreId semaphore_id);
/// Delete a Semaphore that was created by \ref osSemaphoreCreate.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreDelete shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreDelete (osSemaphoreId semaphore_id);
#endif // Semaphore available
// ==== Memory Pool Management Functions ====
#if (defined (osFeature_Pool) && (osFeature_Pool != 0)) // Memory Pool Management available
/// \brief Define a Memory Pool.
/// \param name name of the memory pool.
/// \param no maximum number of blocks (objects) in the memory pool.
/// \param type data type of a single block (object).
/// \note CAN BE CHANGED: The parameter to \b osPoolDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osPoolDef(name, no, type) \
extern const osPoolDef_t os_pool_def_##name
#else // define the object
#define osPoolDef(name, no, type) \
const osPoolDef_t os_pool_def_##name = \
{ (no), sizeof(type), NULL }
#endif
/// \brief Access a Memory Pool definition.
/// \param name name of the memory pool
/// \note CAN BE CHANGED: The parameter to \b osPool shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osPool(name) \
&os_pool_def_##name
/// Create and Initialize a memory pool.
/// \param[in] pool_def memory pool definition referenced with \ref osPool.
/// \return memory pool ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osPoolCreate shall be consistent in every CMSIS-RTOS.
osPoolId osPoolCreate (const osPoolDef_t *pool_def);
/// Allocate a memory block from a memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolAlloc (osPoolId pool_id);
/// Allocate a memory block from a memory pool and set memory block to zero.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolCAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolCAlloc (osPoolId pool_id);
/// Return an allocated memory block back to a specific memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \param[in] block address of the allocated memory block that is returned to the memory pool.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osPoolFree shall be consistent in every CMSIS-RTOS.
osStatus osPoolFree (osPoolId pool_id, void *block);
#endif // Memory Pool Management available
// ==== Message Queue Management Functions ====
#if (defined (osFeature_MessageQ) && (osFeature_MessageQ != 0)) // Message Queues available
/// \brief Create a Message Queue Definition.
/// \param name name of the queue.
/// \param queue_sz maximum number of messages in the queue.
/// \param type data type of a single message element (for debugger).
/// \note CAN BE CHANGED: The parameter to \b osMessageQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMessageQDef(name, queue_sz, type) \
extern const osMessageQDef_t os_messageQ_def_##name
#else // define the object
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define osMessageQDef(name, queue_sz, type) \
const osMessageQDef_t os_messageQ_def_##name = \
{ (queue_sz), sizeof (type), NULL, NULL }
#define osMessageQStaticDef(name, queue_sz, type, buffer, control) \
const osMessageQDef_t os_messageQ_def_##name = \
{ (queue_sz), sizeof (type) , (buffer), (control)}
#else //configSUPPORT_STATIC_ALLOCATION == 1
#define osMessageQDef(name, queue_sz, type) \
const osMessageQDef_t os_messageQ_def_##name = \
{ (queue_sz), sizeof (type) }
#endif
#endif
/// \brief Access a Message Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMessageQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMessageQ(name) \
&os_messageQ_def_##name
/// Create and Initialize a Message Queue.
/// \param[in] queue_def queue definition referenced with \ref osMessageQ.
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return message queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMessageCreate shall be consistent in every CMSIS-RTOS.
osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id);
/// Put a Message to a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] info message information.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMessagePut shall be consistent in every CMSIS-RTOS.
osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec);
/// Get a Message or Wait for a Message from a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return event information that includes status code.
/// \note MUST REMAIN UNCHANGED: \b osMessageGet shall be consistent in every CMSIS-RTOS.
osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec);
#endif // Message Queues available
// ==== Mail Queue Management Functions ====
#if (defined (osFeature_MailQ) && (osFeature_MailQ != 0)) // Mail Queues available
/// \brief Create a Mail Queue Definition.
/// \param name name of the queue
/// \param queue_sz maximum number of messages in queue
/// \param type data type of a single message element
/// \note CAN BE CHANGED: The parameter to \b osMailQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMailQDef(name, queue_sz, type) \
extern struct os_mailQ_cb *os_mailQ_cb_##name \
extern osMailQDef_t os_mailQ_def_##name
#else // define the object
#define osMailQDef(name, queue_sz, type) \
struct os_mailQ_cb *os_mailQ_cb_##name; \
const osMailQDef_t os_mailQ_def_##name = \
{ (queue_sz), sizeof (type), (&os_mailQ_cb_##name) }
#endif
/// \brief Access a Mail Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMailQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMailQ(name) \
&os_mailQ_def_##name
/// Create and Initialize mail queue.
/// \param[in] queue_def reference to the mail queue definition obtain with \ref osMailQ
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return mail queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCreate shall be consistent in every CMSIS-RTOS.
osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id);
/// Allocate a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailAlloc shall be consistent in every CMSIS-RTOS.
void *osMailAlloc (osMailQId queue_id, uint32_t millisec);
/// Allocate a memory block from a mail and set memory block to zero.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCAlloc shall be consistent in every CMSIS-RTOS.
void *osMailCAlloc (osMailQId queue_id, uint32_t millisec);
/// Put a mail to a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail memory block previously allocated with \ref osMailAlloc or \ref osMailCAlloc.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailPut shall be consistent in every CMSIS-RTOS.
osStatus osMailPut (osMailQId queue_id, void *mail);
/// Get a mail from a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return event that contains mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osMailGet shall be consistent in every CMSIS-RTOS.
osEvent osMailGet (osMailQId queue_id, uint32_t millisec);
/// Free a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail pointer to the memory block that was obtained with \ref osMailGet.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailFree shall be consistent in every CMSIS-RTOS.
osStatus osMailFree (osMailQId queue_id, void *mail);
#endif // Mail Queues available
/*************************** Additional specific APIs to Free RTOS ************/
/**
* @brief Handles the tick increment
* @param none.
* @retval none.
*/
void osSystickHandler(void);
#if ( INCLUDE_eTaskGetState == 1 )
/**
* @brief Obtain the state of any thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval the stae of the thread, states are encoded by the osThreadState enumerated type.
*/
osThreadState osThreadGetState(osThreadId thread_id);
#endif /* INCLUDE_eTaskGetState */
#if ( INCLUDE_eTaskGetState == 1 )
/**
* @brief Check if a thread is already suspended or not.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadIsSuspended(osThreadId thread_id);
#endif /* INCLUDE_eTaskGetState */
/**
* @brief Suspend execution of a thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadSuspend (osThreadId thread_id);
/**
* @brief Resume execution of a suspended thread.
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadResume (osThreadId thread_id);
/**
* @brief Suspend execution of a all active threads.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadSuspendAll (void);
/**
* @brief Resume execution of a all suspended threads.
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadResumeAll (void);
/**
* @brief Delay a task until a specified time
* @param PreviousWakeTime Pointer to a variable that holds the time at which the
* task was last unblocked. PreviousWakeTime must be initialised with the current time
* prior to its first use (PreviousWakeTime = osKernelSysTick() )
* @param millisec time delay value
* @retval status code that indicates the execution status of the function.
*/
osStatus osDelayUntil (uint32_t *PreviousWakeTime, uint32_t millisec);
/**
* @brief Abort the delay for a specific thread
* @param thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId
* @retval status code that indicates the execution status of the function.
*/
osStatus osAbortDelay(osThreadId thread_id);
/**
* @brief Lists all the current threads, along with their current state
* and stack usage high water mark.
* @param buffer A buffer into which the above mentioned details
* will be written
* @retval status code that indicates the execution status of the function.
*/
osStatus osThreadList (uint8_t *buffer);
/**
* @brief Receive an item from a queue without removing the item from the queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval event information that includes status code.
*/
osEvent osMessagePeek (osMessageQId queue_id, uint32_t millisec);
/**
* @brief Get the number of messaged stored in a queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval number of messages stored in a queue.
*/
uint32_t osMessageWaiting(osMessageQId queue_id);
/**
* @brief Get the available space in a message queue.
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval available space in a message queue.
*/
uint32_t osMessageAvailableSpace(osMessageQId queue_id);
/**
* @brief Delete a Message Queue
* @param queue_id message queue ID obtained with \ref osMessageCreate.
* @retval status code that indicates the execution status of the function.
*/
osStatus osMessageDelete (osMessageQId queue_id);
/**
* @brief Create and Initialize a Recursive Mutex
* @param mutex_def mutex definition referenced with \ref osMutex.
* @retval mutex ID for reference by other functions or NULL in case of error..
*/
osMutexId osRecursiveMutexCreate (const osMutexDef_t *mutex_def);
/**
* @brief Release a Recursive Mutex
* @param mutex_id mutex ID obtained by \ref osRecursiveMutexCreate.
* @retval status code that indicates the execution status of the function.
*/
osStatus osRecursiveMutexRelease (osMutexId mutex_id);
/**
* @brief Release a Recursive Mutex
* @param mutex_id mutex ID obtained by \ref osRecursiveMutexCreate.
* @param millisec timeout value or 0 in case of no time-out.
* @retval status code that indicates the execution status of the function.
*/
osStatus osRecursiveMutexWait (osMutexId mutex_id, uint32_t millisec);
/**
* @brief Returns the current count value of a counting semaphore
* @param semaphore_id semaphore_id ID obtained by \ref osSemaphoreCreate.
* @retval count value
*/
uint32_t osSemaphoreGetCount(osSemaphoreId semaphore_id);
#ifdef __cplusplus
}
#endif
#endif // _CMSIS_OS_H
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#include "FreeRTOS.h"
#include "task.h"
#include "croutine.h"
/* Remove the whole file is co-routines are not being used. */
#if( configUSE_CO_ROUTINES != 0 )
/*
* Some kernel aware debuggers require data to be viewed to be global, rather
* than file scope.
*/
#ifdef portREMOVE_STATIC_QUALIFIER
#define static
#endif
/* Lists for ready and blocked co-routines. --------------------*/
static List_t pxReadyCoRoutineLists[ configMAX_CO_ROUTINE_PRIORITIES ]; /*< Prioritised ready co-routines. */
static List_t xDelayedCoRoutineList1; /*< Delayed co-routines. */
static List_t xDelayedCoRoutineList2; /*< Delayed co-routines (two lists are used - one for delays that have overflowed the current tick count. */
static List_t * pxDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used. */
static List_t * pxOverflowDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used to hold co-routines that have overflowed the current tick count. */
static List_t xPendingReadyCoRoutineList; /*< Holds co-routines that have been readied by an external event. They cannot be added directly to the ready lists as the ready lists cannot be accessed by interrupts. */
/* Other file private variables. --------------------------------*/
CRCB_t * pxCurrentCoRoutine = NULL;
static UBaseType_t uxTopCoRoutineReadyPriority = 0;
static TickType_t xCoRoutineTickCount = 0, xLastTickCount = 0, xPassedTicks = 0;
/* The initial state of the co-routine when it is created. */
#define corINITIAL_STATE ( 0 )
/*
* Place the co-routine represented by pxCRCB into the appropriate ready queue
* for the priority. It is inserted at the end of the list.
*
* This macro accesses the co-routine ready lists and therefore must not be
* used from within an ISR.
*/
#define prvAddCoRoutineToReadyQueue( pxCRCB ) \
{ \
if( pxCRCB->uxPriority > uxTopCoRoutineReadyPriority ) \
{ \
uxTopCoRoutineReadyPriority = pxCRCB->uxPriority; \
} \
vListInsertEnd( ( List_t * ) &( pxReadyCoRoutineLists[ pxCRCB->uxPriority ] ), &( pxCRCB->xGenericListItem ) ); \
}
/*
* Utility to ready all the lists used by the scheduler. This is called
* automatically upon the creation of the first co-routine.
*/
static void prvInitialiseCoRoutineLists( void );
/*
* Co-routines that are readied by an interrupt cannot be placed directly into
* the ready lists (there is no mutual exclusion). Instead they are placed in
* in the pending ready list in order that they can later be moved to the ready
* list by the co-routine scheduler.
*/
static void prvCheckPendingReadyList( void );
/*
* Macro that looks at the list of co-routines that are currently delayed to
* see if any require waking.
*
* Co-routines are stored in the queue in the order of their wake time -
* meaning once one co-routine has been found whose timer has not expired
* we need not look any further down the list.
*/
static void prvCheckDelayedList( void );
/*-----------------------------------------------------------*/
BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex )
{
BaseType_t xReturn;
CRCB_t *pxCoRoutine;
/* Allocate the memory that will store the co-routine control block. */
pxCoRoutine = ( CRCB_t * ) pvPortMalloc( sizeof( CRCB_t ) );
if( pxCoRoutine )
{
/* If pxCurrentCoRoutine is NULL then this is the first co-routine to
be created and the co-routine data structures need initialising. */
if( pxCurrentCoRoutine == NULL )
{
pxCurrentCoRoutine = pxCoRoutine;
prvInitialiseCoRoutineLists();
}
/* Check the priority is within limits. */
if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES )
{
uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1;
}
/* Fill out the co-routine control block from the function parameters. */
pxCoRoutine->uxState = corINITIAL_STATE;
pxCoRoutine->uxPriority = uxPriority;
pxCoRoutine->uxIndex = uxIndex;
pxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode;
/* Initialise all the other co-routine control block parameters. */
vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) );
vListInitialiseItem( &( pxCoRoutine->xEventListItem ) );
/* Set the co-routine control block as a link back from the ListItem_t.
This is so we can get back to the containing CRCB from a generic item
in a list. */
listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine );
listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine );
/* Event lists are always in priority order. */
listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), ( ( TickType_t ) configMAX_CO_ROUTINE_PRIORITIES - ( TickType_t ) uxPriority ) );
/* Now the co-routine has been initialised it can be added to the ready
list at the correct priority. */
prvAddCoRoutineToReadyQueue( pxCoRoutine );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
return xReturn;
}
/*-----------------------------------------------------------*/
void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList )
{
TickType_t xTimeToWake;
/* Calculate the time to wake - this may overflow but this is
not a problem. */
xTimeToWake = xCoRoutineTickCount + xTicksToDelay;
/* We must remove ourselves from the ready list before adding
ourselves to the blocked list as the same list item is used for
both lists. */
( void ) uxListRemove( ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
/* The list item will be inserted in wake time order. */
listSET_LIST_ITEM_VALUE( &( pxCurrentCoRoutine->xGenericListItem ), xTimeToWake );
if( xTimeToWake < xCoRoutineTickCount )
{
/* Wake time has overflowed. Place this item in the
overflow list. */
vListInsert( ( List_t * ) pxOverflowDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
}
else
{
/* The wake time has not overflowed, so we can use the
current block list. */
vListInsert( ( List_t * ) pxDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
}
if( pxEventList )
{
/* Also add the co-routine to an event list. If this is done then the
function must be called with interrupts disabled. */
vListInsert( pxEventList, &( pxCurrentCoRoutine->xEventListItem ) );
}
}
/*-----------------------------------------------------------*/
static void prvCheckPendingReadyList( void )
{
/* Are there any co-routines waiting to get moved to the ready list? These
are co-routines that have been readied by an ISR. The ISR cannot access
the ready lists itself. */
while( listLIST_IS_EMPTY( &xPendingReadyCoRoutineList ) == pdFALSE )
{
CRCB_t *pxUnblockedCRCB;
/* The pending ready list can be accessed by an ISR. */
portDISABLE_INTERRUPTS();
{
pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( (&xPendingReadyCoRoutineList) );
( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
}
portENABLE_INTERRUPTS();
( void ) uxListRemove( &( pxUnblockedCRCB->xGenericListItem ) );
prvAddCoRoutineToReadyQueue( pxUnblockedCRCB );
}
}
/*-----------------------------------------------------------*/
static void prvCheckDelayedList( void )
{
CRCB_t *pxCRCB;
xPassedTicks = xTaskGetTickCount() - xLastTickCount;
while( xPassedTicks )
{
xCoRoutineTickCount++;
xPassedTicks--;
/* If the tick count has overflowed we need to swap the ready lists. */
if( xCoRoutineTickCount == 0 )
{
List_t * pxTemp;
/* Tick count has overflowed so we need to swap the delay lists. If there are
any items in pxDelayedCoRoutineList here then there is an error! */
pxTemp = pxDelayedCoRoutineList;
pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList;
pxOverflowDelayedCoRoutineList = pxTemp;
}
/* See if this tick has made a timeout expire. */
while( listLIST_IS_EMPTY( pxDelayedCoRoutineList ) == pdFALSE )
{
pxCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedCoRoutineList );
if( xCoRoutineTickCount < listGET_LIST_ITEM_VALUE( &( pxCRCB->xGenericListItem ) ) )
{
/* Timeout not yet expired. */
break;
}
portDISABLE_INTERRUPTS();
{
/* The event could have occurred just before this critical
section. If this is the case then the generic list item will
have been moved to the pending ready list and the following
line is still valid. Also the pvContainer parameter will have
been set to NULL so the following lines are also valid. */
( void ) uxListRemove( &( pxCRCB->xGenericListItem ) );
/* Is the co-routine waiting on an event also? */
if( pxCRCB->xEventListItem.pvContainer )
{
( void ) uxListRemove( &( pxCRCB->xEventListItem ) );
}
}
portENABLE_INTERRUPTS();
prvAddCoRoutineToReadyQueue( pxCRCB );
}
}
xLastTickCount = xCoRoutineTickCount;
}
/*-----------------------------------------------------------*/
void vCoRoutineSchedule( void )
{
/* See if any co-routines readied by events need moving to the ready lists. */
prvCheckPendingReadyList();
/* See if any delayed co-routines have timed out. */
prvCheckDelayedList();
/* Find the highest priority queue that contains ready co-routines. */
while( listLIST_IS_EMPTY( &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ) )
{
if( uxTopCoRoutineReadyPriority == 0 )
{
/* No more co-routines to check. */
return;
}
--uxTopCoRoutineReadyPriority;
}
/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the co-routines
of the same priority get an equal share of the processor time. */
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) );
/* Call the co-routine. */
( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex );
return;
}
/*-----------------------------------------------------------*/
static void prvInitialiseCoRoutineLists( void )
{
UBaseType_t uxPriority;
for( uxPriority = 0; uxPriority < configMAX_CO_ROUTINE_PRIORITIES; uxPriority++ )
{
vListInitialise( ( List_t * ) &( pxReadyCoRoutineLists[ uxPriority ] ) );
}
vListInitialise( ( List_t * ) &xDelayedCoRoutineList1 );
vListInitialise( ( List_t * ) &xDelayedCoRoutineList2 );
vListInitialise( ( List_t * ) &xPendingReadyCoRoutineList );
/* Start with pxDelayedCoRoutineList using list1 and the
pxOverflowDelayedCoRoutineList using list2. */
pxDelayedCoRoutineList = &xDelayedCoRoutineList1;
pxOverflowDelayedCoRoutineList = &xDelayedCoRoutineList2;
}
/*-----------------------------------------------------------*/
BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList )
{
CRCB_t *pxUnblockedCRCB;
BaseType_t xReturn;
/* This function is called from within an interrupt. It can only access
event lists and the pending ready list. This function assumes that a
check has already been made to ensure pxEventList is not empty. */
pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
vListInsertEnd( ( List_t * ) &( xPendingReadyCoRoutineList ), &( pxUnblockedCRCB->xEventListItem ) );
if( pxUnblockedCRCB->uxPriority >= pxCurrentCoRoutine->uxPriority )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
}
#endif /* configUSE_CO_ROUTINES == 0 */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/* Standard includes. */
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "event_groups.h"
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
header files above, but not in this file, in order to generate the correct
privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
/* The following bit fields convey control information in a task's event list
item value. It is important they don't clash with the
taskEVENT_LIST_ITEM_VALUE_IN_USE definition. */
#if configUSE_16_BIT_TICKS == 1
#define eventCLEAR_EVENTS_ON_EXIT_BIT 0x0100U
#define eventUNBLOCKED_DUE_TO_BIT_SET 0x0200U
#define eventWAIT_FOR_ALL_BITS 0x0400U
#define eventEVENT_BITS_CONTROL_BYTES 0xff00U
#else
#define eventCLEAR_EVENTS_ON_EXIT_BIT 0x01000000UL
#define eventUNBLOCKED_DUE_TO_BIT_SET 0x02000000UL
#define eventWAIT_FOR_ALL_BITS 0x04000000UL
#define eventEVENT_BITS_CONTROL_BYTES 0xff000000UL
#endif
typedef struct xEventGroupDefinition
{
EventBits_t uxEventBits;
List_t xTasksWaitingForBits; /*< List of tasks waiting for a bit to be set. */
#if( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxEventGroupNumber;
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the event group is statically allocated to ensure no attempt is made to free the memory. */
#endif
} EventGroup_t;
/*-----------------------------------------------------------*/
/*
* Test the bits set in uxCurrentEventBits to see if the wait condition is met.
* The wait condition is defined by xWaitForAllBits. If xWaitForAllBits is
* pdTRUE then the wait condition is met if all the bits set in uxBitsToWaitFor
* are also set in uxCurrentEventBits. If xWaitForAllBits is pdFALSE then the
* wait condition is met if any of the bits set in uxBitsToWait for are also set
* in uxCurrentEventBits.
*/
PRIVILEGED_FUNCTION static BaseType_t prvTestWaitCondition( const EventBits_t uxCurrentEventBits, const EventBits_t uxBitsToWaitFor, const BaseType_t xWaitForAllBits );
/*-----------------------------------------------------------*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
EventGroupHandle_t xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer )
{
EventGroup_t *pxEventBits;
/* A StaticEventGroup_t object must be provided. */
configASSERT( pxEventGroupBuffer );
/* The user has provided a statically allocated event group - use it. */
pxEventBits = ( EventGroup_t * ) pxEventGroupBuffer; /*lint !e740 EventGroup_t and StaticEventGroup_t are guaranteed to have the same size and alignment requirement - checked by configASSERT(). */
if( pxEventBits != NULL )
{
pxEventBits->uxEventBits = 0;
vListInitialise( &( pxEventBits->xTasksWaitingForBits ) );
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
{
/* Both static and dynamic allocation can be used, so note that
this event group was created statically in case the event group
is later deleted. */
pxEventBits->ucStaticallyAllocated = pdTRUE;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
traceEVENT_GROUP_CREATE( pxEventBits );
}
else
{
traceEVENT_GROUP_CREATE_FAILED();
}
return ( EventGroupHandle_t ) pxEventBits;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
EventGroupHandle_t xEventGroupCreate( void )
{
EventGroup_t *pxEventBits;
/* Allocate the event group. */
pxEventBits = ( EventGroup_t * ) pvPortMalloc( sizeof( EventGroup_t ) );
if( pxEventBits != NULL )
{
pxEventBits->uxEventBits = 0;
vListInitialise( &( pxEventBits->xTasksWaitingForBits ) );
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
{
/* Both static and dynamic allocation can be used, so note this
event group was allocated statically in case the event group is
later deleted. */
pxEventBits->ucStaticallyAllocated = pdFALSE;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
traceEVENT_GROUP_CREATE( pxEventBits );
}
else
{
traceEVENT_GROUP_CREATE_FAILED();
}
return ( EventGroupHandle_t ) pxEventBits;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait )
{
EventBits_t uxOriginalBitValue, uxReturn;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
BaseType_t xAlreadyYielded;
BaseType_t xTimeoutOccurred = pdFALSE;
configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
configASSERT( uxBitsToWaitFor != 0 );
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
{
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
}
#endif
vTaskSuspendAll();
{
uxOriginalBitValue = pxEventBits->uxEventBits;
( void ) xEventGroupSetBits( xEventGroup, uxBitsToSet );
if( ( ( uxOriginalBitValue | uxBitsToSet ) & uxBitsToWaitFor ) == uxBitsToWaitFor )
{
/* All the rendezvous bits are now set - no need to block. */
uxReturn = ( uxOriginalBitValue | uxBitsToSet );
/* Rendezvous always clear the bits. They will have been cleared
already unless this is the only task in the rendezvous. */
pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
xTicksToWait = 0;
}
else
{
if( xTicksToWait != ( TickType_t ) 0 )
{
traceEVENT_GROUP_SYNC_BLOCK( xEventGroup, uxBitsToSet, uxBitsToWaitFor );
/* Store the bits that the calling task is waiting for in the
task's event list item so the kernel knows when a match is
found. Then enter the blocked state. */
vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | eventCLEAR_EVENTS_ON_EXIT_BIT | eventWAIT_FOR_ALL_BITS ), xTicksToWait );
/* This assignment is obsolete as uxReturn will get set after
the task unblocks, but some compilers mistakenly generate a
warning about uxReturn being returned without being set if the
assignment is omitted. */
uxReturn = 0;
}
else
{
/* The rendezvous bits were not set, but no block time was
specified - just return the current event bit value. */
uxReturn = pxEventBits->uxEventBits;
}
}
}
xAlreadyYielded = xTaskResumeAll();
if( xTicksToWait != ( TickType_t ) 0 )
{
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The task blocked to wait for its required bits to be set - at this
point either the required bits were set or the block time expired. If
the required bits were set they will have been stored in the task's
event list item, and they should now be retrieved then cleared. */
uxReturn = uxTaskResetEventItemValue();
if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
{
/* The task timed out, just return the current event bit value. */
taskENTER_CRITICAL();
{
uxReturn = pxEventBits->uxEventBits;
/* Although the task got here because it timed out before the
bits it was waiting for were set, it is possible that since it
unblocked another task has set the bits. If this is the case
then it needs to clear the bits before exiting. */
if( ( uxReturn & uxBitsToWaitFor ) == uxBitsToWaitFor )
{
pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
xTimeoutOccurred = pdTRUE;
}
else
{
/* The task unblocked because the bits were set. */
}
/* Control bits might be set as the task had blocked should not be
returned. */
uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
}
traceEVENT_GROUP_SYNC_END( xEventGroup, uxBitsToSet, uxBitsToWaitFor, xTimeoutOccurred );
return uxReturn;
}
/*-----------------------------------------------------------*/
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn, uxControlBits = 0;
BaseType_t xWaitConditionMet, xAlreadyYielded;
BaseType_t xTimeoutOccurred = pdFALSE;
/* Check the user is not attempting to wait on the bits used by the kernel
itself, and that at least one bit is being requested. */
configASSERT( xEventGroup );
configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
configASSERT( uxBitsToWaitFor != 0 );
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
{
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
}
#endif
vTaskSuspendAll();
{
const EventBits_t uxCurrentEventBits = pxEventBits->uxEventBits;
/* Check to see if the wait condition is already met or not. */
xWaitConditionMet = prvTestWaitCondition( uxCurrentEventBits, uxBitsToWaitFor, xWaitForAllBits );
if( xWaitConditionMet != pdFALSE )
{
/* The wait condition has already been met so there is no need to
block. */
uxReturn = uxCurrentEventBits;
xTicksToWait = ( TickType_t ) 0;
/* Clear the wait bits if requested to do so. */
if( xClearOnExit != pdFALSE )
{
pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else if( xTicksToWait == ( TickType_t ) 0 )
{
/* The wait condition has not been met, but no block time was
specified, so just return the current value. */
uxReturn = uxCurrentEventBits;
}
else
{
/* The task is going to block to wait for its required bits to be
set. uxControlBits are used to remember the specified behaviour of
this call to xEventGroupWaitBits() - for use when the event bits
unblock the task. */
if( xClearOnExit != pdFALSE )
{
uxControlBits |= eventCLEAR_EVENTS_ON_EXIT_BIT;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xWaitForAllBits != pdFALSE )
{
uxControlBits |= eventWAIT_FOR_ALL_BITS;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Store the bits that the calling task is waiting for in the
task's event list item so the kernel knows when a match is
found. Then enter the blocked state. */
vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | uxControlBits ), xTicksToWait );
/* This is obsolete as it will get set after the task unblocks, but
some compilers mistakenly generate a warning about the variable
being returned without being set if it is not done. */
uxReturn = 0;
traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor );
}
}
xAlreadyYielded = xTaskResumeAll();
if( xTicksToWait != ( TickType_t ) 0 )
{
if( xAlreadyYielded == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The task blocked to wait for its required bits to be set - at this
point either the required bits were set or the block time expired. If
the required bits were set they will have been stored in the task's
event list item, and they should now be retrieved then cleared. */
uxReturn = uxTaskResetEventItemValue();
if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
{
taskENTER_CRITICAL();
{
/* The task timed out, just return the current event bit value. */
uxReturn = pxEventBits->uxEventBits;
/* It is possible that the event bits were updated between this
task leaving the Blocked state and running again. */
if( prvTestWaitCondition( uxReturn, uxBitsToWaitFor, xWaitForAllBits ) != pdFALSE )
{
if( xClearOnExit != pdFALSE )
{
pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
/* Prevent compiler warnings when trace macros are not used. */
xTimeoutOccurred = pdFALSE;
}
else
{
/* The task unblocked because the bits were set. */
}
/* The task blocked so control bits may have been set. */
uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
}
traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred );
return uxReturn;
}
/*-----------------------------------------------------------*/
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn;
/* Check the user is not attempting to clear the bits used by the kernel
itself. */
configASSERT( xEventGroup );
configASSERT( ( uxBitsToClear & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
taskENTER_CRITICAL();
{
traceEVENT_GROUP_CLEAR_BITS( xEventGroup, uxBitsToClear );
/* The value returned is the event group value prior to the bits being
cleared. */
uxReturn = pxEventBits->uxEventBits;
/* Clear the bits. */
pxEventBits->uxEventBits &= ~uxBitsToClear;
}
taskEXIT_CRITICAL();
return uxReturn;
}
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 1 ) )
BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
{
BaseType_t xReturn;
traceEVENT_GROUP_CLEAR_BITS_FROM_ISR( xEventGroup, uxBitsToClear );
xReturn = xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL );
return xReturn;
}
#endif
/*-----------------------------------------------------------*/
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup )
{
UBaseType_t uxSavedInterruptStatus;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn;
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
uxReturn = pxEventBits->uxEventBits;
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return uxReturn;
}
/*-----------------------------------------------------------*/
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet )
{
ListItem_t *pxListItem, *pxNext;
ListItem_t const *pxListEnd;
List_t *pxList;
EventBits_t uxBitsToClear = 0, uxBitsWaitedFor, uxControlBits;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
BaseType_t xMatchFound = pdFALSE;
/* Check the user is not attempting to set the bits used by the kernel
itself. */
configASSERT( xEventGroup );
configASSERT( ( uxBitsToSet & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
pxList = &( pxEventBits->xTasksWaitingForBits );
pxListEnd = listGET_END_MARKER( pxList ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
vTaskSuspendAll();
{
traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet );
pxListItem = listGET_HEAD_ENTRY( pxList );
/* Set the bits. */
pxEventBits->uxEventBits |= uxBitsToSet;
/* See if the new bit value should unblock any tasks. */
while( pxListItem != pxListEnd )
{
pxNext = listGET_NEXT( pxListItem );
uxBitsWaitedFor = listGET_LIST_ITEM_VALUE( pxListItem );
xMatchFound = pdFALSE;
/* Split the bits waited for from the control bits. */
uxControlBits = uxBitsWaitedFor & eventEVENT_BITS_CONTROL_BYTES;
uxBitsWaitedFor &= ~eventEVENT_BITS_CONTROL_BYTES;
if( ( uxControlBits & eventWAIT_FOR_ALL_BITS ) == ( EventBits_t ) 0 )
{
/* Just looking for single bit being set. */
if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) != ( EventBits_t ) 0 )
{
xMatchFound = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) == uxBitsWaitedFor )
{
/* All bits are set. */
xMatchFound = pdTRUE;
}
else
{
/* Need all bits to be set, but not all the bits were set. */
}
if( xMatchFound != pdFALSE )
{
/* The bits match. Should the bits be cleared on exit? */
if( ( uxControlBits & eventCLEAR_EVENTS_ON_EXIT_BIT ) != ( EventBits_t ) 0 )
{
uxBitsToClear |= uxBitsWaitedFor;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Store the actual event flag value in the task's event list
item before removing the task from the event list. The
eventUNBLOCKED_DUE_TO_BIT_SET bit is set so the task knows
that is was unblocked due to its required bits matching, rather
than because it timed out. */
( void ) xTaskRemoveFromUnorderedEventList( pxListItem, pxEventBits->uxEventBits | eventUNBLOCKED_DUE_TO_BIT_SET );
}
/* Move onto the next list item. Note pxListItem->pxNext is not
used here as the list item may have been removed from the event list
and inserted into the ready/pending reading list. */
pxListItem = pxNext;
}
/* Clear any bits that matched when the eventCLEAR_EVENTS_ON_EXIT_BIT
bit was set in the control word. */
pxEventBits->uxEventBits &= ~uxBitsToClear;
}
( void ) xTaskResumeAll();
return pxEventBits->uxEventBits;
}
/*-----------------------------------------------------------*/
void vEventGroupDelete( EventGroupHandle_t xEventGroup )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
const List_t *pxTasksWaitingForBits = &( pxEventBits->xTasksWaitingForBits );
vTaskSuspendAll();
{
traceEVENT_GROUP_DELETE( xEventGroup );
while( listCURRENT_LIST_LENGTH( pxTasksWaitingForBits ) > ( UBaseType_t ) 0 )
{
/* Unblock the task, returning 0 as the event list is being deleted
and cannot therefore have any bits set. */
configASSERT( pxTasksWaitingForBits->xListEnd.pxNext != ( ListItem_t * ) &( pxTasksWaitingForBits->xListEnd ) );
( void ) xTaskRemoveFromUnorderedEventList( pxTasksWaitingForBits->xListEnd.pxNext, eventUNBLOCKED_DUE_TO_BIT_SET );
}
#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
{
/* The event group can only have been allocated dynamically - free
it again. */
vPortFree( pxEventBits );
}
#elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
{
/* The event group could have been allocated statically or
dynamically, so check before attempting to free the memory. */
if( pxEventBits->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
{
vPortFree( pxEventBits );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
( void ) xTaskResumeAll();
}
/*-----------------------------------------------------------*/
/* For internal use only - execute a 'set bits' command that was pended from
an interrupt. */
void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet )
{
( void ) xEventGroupSetBits( pvEventGroup, ( EventBits_t ) ulBitsToSet );
}
/*-----------------------------------------------------------*/
/* For internal use only - execute a 'clear bits' command that was pended from
an interrupt. */
void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear )
{
( void ) xEventGroupClearBits( pvEventGroup, ( EventBits_t ) ulBitsToClear );
}
/*-----------------------------------------------------------*/
static BaseType_t prvTestWaitCondition( const EventBits_t uxCurrentEventBits, const EventBits_t uxBitsToWaitFor, const BaseType_t xWaitForAllBits )
{
BaseType_t xWaitConditionMet = pdFALSE;
if( xWaitForAllBits == pdFALSE )
{
/* Task only has to wait for one bit within uxBitsToWaitFor to be
set. Is one already set? */
if( ( uxCurrentEventBits & uxBitsToWaitFor ) != ( EventBits_t ) 0 )
{
xWaitConditionMet = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Task has to wait for all the bits in uxBitsToWaitFor to be set.
Are they set already? */
if( ( uxCurrentEventBits & uxBitsToWaitFor ) == uxBitsToWaitFor )
{
xWaitConditionMet = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
return xWaitConditionMet;
}
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 1 ) )
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken )
{
BaseType_t xReturn;
traceEVENT_GROUP_SET_BITS_FROM_ISR( xEventGroup, uxBitsToSet );
xReturn = xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken );
return xReturn;
}
#endif
/*-----------------------------------------------------------*/
#if (configUSE_TRACE_FACILITY == 1)
UBaseType_t uxEventGroupGetNumber( void* xEventGroup )
{
UBaseType_t xReturn;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
if( xEventGroup == NULL )
{
xReturn = 0;
}
else
{
xReturn = pxEventBits->uxEventGroupNumber;
}
return xReturn;
}
#endif
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef INC_FREERTOS_H
#define INC_FREERTOS_H
/*
* Include the generic headers required for the FreeRTOS port being used.
*/
#include <stddef.h>
/*
* If stdint.h cannot be located then:
* + If using GCC ensure the -nostdint options is *not* being used.
* + Ensure the project's include path includes the directory in which your
* compiler stores stdint.h.
* + Set any compiler options necessary for it to support C99, as technically
* stdint.h is only mandatory with C99 (FreeRTOS does not require C99 in any
* other way).
* + The FreeRTOS download includes a simple stdint.h definition that can be
* used in cases where none is provided by the compiler. The files only
* contains the typedefs required to build FreeRTOS. Read the instructions
* in FreeRTOS/source/stdint.readme for more information.
*/
#include <stdint.h> /* READ COMMENT ABOVE. */
#ifdef __cplusplus
extern "C" {
#endif
/* Application specific configuration options. */
#include "FreeRTOSConfig.h"
/* Basic FreeRTOS definitions. */
#include "projdefs.h"
/* Definitions specific to the port being used. */
#include "portable.h"
/* Must be defaulted before configUSE_NEWLIB_REENTRANT is used below. */
#ifndef configUSE_NEWLIB_REENTRANT
#define configUSE_NEWLIB_REENTRANT 0
#endif
/* Required if struct _reent is used. */
#if ( configUSE_NEWLIB_REENTRANT == 1 )
#include <reent.h>
#endif
/*
* Check all the required application specific macros have been defined.
* These macros are application specific and (as downloaded) are defined
* within FreeRTOSConfig.h.
*/
#ifndef configMINIMAL_STACK_SIZE
#error Missing definition: configMINIMAL_STACK_SIZE must be defined in FreeRTOSConfig.h. configMINIMAL_STACK_SIZE defines the size (in words) of the stack allocated to the idle task. Refer to the demo project provided for your port for a suitable value.
#endif
#ifndef configMAX_PRIORITIES
#error Missing definition: configMAX_PRIORITIES must be defined in FreeRTOSConfig.h. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_PREEMPTION
#error Missing definition: configUSE_PREEMPTION must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_IDLE_HOOK
#error Missing definition: configUSE_IDLE_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_TICK_HOOK
#error Missing definition: configUSE_TICK_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_16_BIT_TICKS
#error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configMAX_PRIORITIES
#error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
#endif
#ifndef configUSE_CO_ROUTINES
#define configUSE_CO_ROUTINES 0
#endif
#ifndef INCLUDE_vTaskPrioritySet
#define INCLUDE_vTaskPrioritySet 0
#endif
#ifndef INCLUDE_uxTaskPriorityGet
#define INCLUDE_uxTaskPriorityGet 0
#endif
#ifndef INCLUDE_vTaskDelete
#define INCLUDE_vTaskDelete 0
#endif
#ifndef INCLUDE_vTaskSuspend
#define INCLUDE_vTaskSuspend 0
#endif
#ifndef INCLUDE_vTaskDelayUntil
#define INCLUDE_vTaskDelayUntil 0
#endif
#ifndef INCLUDE_vTaskDelay
#define INCLUDE_vTaskDelay 0
#endif
#ifndef INCLUDE_xTaskGetIdleTaskHandle
#define INCLUDE_xTaskGetIdleTaskHandle 0
#endif
#ifndef INCLUDE_xTaskAbortDelay
#define INCLUDE_xTaskAbortDelay 0
#endif
#ifndef INCLUDE_xQueueGetMutexHolder
#define INCLUDE_xQueueGetMutexHolder 0
#endif
#ifndef INCLUDE_xSemaphoreGetMutexHolder
#define INCLUDE_xSemaphoreGetMutexHolder INCLUDE_xQueueGetMutexHolder
#endif
#ifndef INCLUDE_xTaskGetHandle
#define INCLUDE_xTaskGetHandle 0
#endif
#ifndef INCLUDE_uxTaskGetStackHighWaterMark
#define INCLUDE_uxTaskGetStackHighWaterMark 0
#endif
#ifndef INCLUDE_eTaskGetState
#define INCLUDE_eTaskGetState 0
#endif
#ifndef INCLUDE_xTaskResumeFromISR
#define INCLUDE_xTaskResumeFromISR 1
#endif
#ifndef INCLUDE_xTimerPendFunctionCall
#define INCLUDE_xTimerPendFunctionCall 0
#endif
#ifndef INCLUDE_xTaskGetSchedulerState
#define INCLUDE_xTaskGetSchedulerState 0
#endif
#ifndef INCLUDE_xTaskGetCurrentTaskHandle
#define INCLUDE_xTaskGetCurrentTaskHandle 0
#endif
#if configUSE_CO_ROUTINES != 0
#ifndef configMAX_CO_ROUTINE_PRIORITIES
#error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
#endif
#endif
#ifndef configUSE_DAEMON_TASK_STARTUP_HOOK
#define configUSE_DAEMON_TASK_STARTUP_HOOK 0
#endif
#ifndef configUSE_APPLICATION_TASK_TAG
#define configUSE_APPLICATION_TASK_TAG 0
#endif
#ifndef configNUM_THREAD_LOCAL_STORAGE_POINTERS
#define configNUM_THREAD_LOCAL_STORAGE_POINTERS 0
#endif
#ifndef configUSE_RECURSIVE_MUTEXES
#define configUSE_RECURSIVE_MUTEXES 0
#endif
#ifndef configUSE_MUTEXES
#define configUSE_MUTEXES 0
#endif
#ifndef configUSE_TIMERS
#define configUSE_TIMERS 0
#endif
#ifndef configUSE_COUNTING_SEMAPHORES
#define configUSE_COUNTING_SEMAPHORES 0
#endif
#ifndef configUSE_ALTERNATIVE_API
#define configUSE_ALTERNATIVE_API 0
#endif
#ifndef portCRITICAL_NESTING_IN_TCB
#define portCRITICAL_NESTING_IN_TCB 0
#endif
#ifndef configMAX_TASK_NAME_LEN
#define configMAX_TASK_NAME_LEN 16
#endif
#ifndef configIDLE_SHOULD_YIELD
#define configIDLE_SHOULD_YIELD 1
#endif
#if configMAX_TASK_NAME_LEN < 1
#error configMAX_TASK_NAME_LEN must be set to a minimum of 1 in FreeRTOSConfig.h
#endif
#ifndef configASSERT
#define configASSERT( x )
#define configASSERT_DEFINED 0
#else
#define configASSERT_DEFINED 1
#endif
/* The timers module relies on xTaskGetSchedulerState(). */
#if configUSE_TIMERS == 1
#ifndef configTIMER_TASK_PRIORITY
#error If configUSE_TIMERS is set to 1 then configTIMER_TASK_PRIORITY must also be defined.
#endif /* configTIMER_TASK_PRIORITY */
#ifndef configTIMER_QUEUE_LENGTH
#error If configUSE_TIMERS is set to 1 then configTIMER_QUEUE_LENGTH must also be defined.
#endif /* configTIMER_QUEUE_LENGTH */
#ifndef configTIMER_TASK_STACK_DEPTH
#error If configUSE_TIMERS is set to 1 then configTIMER_TASK_STACK_DEPTH must also be defined.
#endif /* configTIMER_TASK_STACK_DEPTH */
#endif /* configUSE_TIMERS */
#ifndef portSET_INTERRUPT_MASK_FROM_ISR
#define portSET_INTERRUPT_MASK_FROM_ISR() 0
#endif
#ifndef portCLEAR_INTERRUPT_MASK_FROM_ISR
#define portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedStatusValue ) ( void ) uxSavedStatusValue
#endif
#ifndef portCLEAN_UP_TCB
#define portCLEAN_UP_TCB( pxTCB ) ( void ) pxTCB
#endif
#ifndef portPRE_TASK_DELETE_HOOK
#define portPRE_TASK_DELETE_HOOK( pvTaskToDelete, pxYieldPending )
#endif
#ifndef portSETUP_TCB
#define portSETUP_TCB( pxTCB ) ( void ) pxTCB
#endif
#ifndef configQUEUE_REGISTRY_SIZE
#define configQUEUE_REGISTRY_SIZE 0U
#endif
#if ( configQUEUE_REGISTRY_SIZE < 1 )
#define vQueueAddToRegistry( xQueue, pcName )
#define vQueueUnregisterQueue( xQueue )
#define pcQueueGetName( xQueue )
#endif
#ifndef portPOINTER_SIZE_TYPE
#define portPOINTER_SIZE_TYPE uint32_t
#endif
/* Remove any unused trace macros. */
#ifndef traceSTART
/* Used to perform any necessary initialisation - for example, open a file
into which trace is to be written. */
#define traceSTART()
#endif
#ifndef traceEND
/* Use to close a trace, for example close a file into which trace has been
written. */
#define traceEND()
#endif
#ifndef traceTASK_SWITCHED_IN
/* Called after a task has been selected to run. pxCurrentTCB holds a pointer
to the task control block of the selected task. */
#define traceTASK_SWITCHED_IN()
#endif
#ifndef traceINCREASE_TICK_COUNT
/* Called before stepping the tick count after waking from tickless idle
sleep. */
#define traceINCREASE_TICK_COUNT( x )
#endif
#ifndef traceLOW_POWER_IDLE_BEGIN
/* Called immediately before entering tickless idle. */
#define traceLOW_POWER_IDLE_BEGIN()
#endif
#ifndef traceLOW_POWER_IDLE_END
/* Called when returning to the Idle task after a tickless idle. */
#define traceLOW_POWER_IDLE_END()
#endif
#ifndef traceTASK_SWITCHED_OUT
/* Called before a task has been selected to run. pxCurrentTCB holds a pointer
to the task control block of the task being switched out. */
#define traceTASK_SWITCHED_OUT()
#endif
#ifndef traceTASK_PRIORITY_INHERIT
/* Called when a task attempts to take a mutex that is already held by a
lower priority task. pxTCBOfMutexHolder is a pointer to the TCB of the task
that holds the mutex. uxInheritedPriority is the priority the mutex holder
will inherit (the priority of the task that is attempting to obtain the
muted. */
#define traceTASK_PRIORITY_INHERIT( pxTCBOfMutexHolder, uxInheritedPriority )
#endif
#ifndef traceTASK_PRIORITY_DISINHERIT
/* Called when a task releases a mutex, the holding of which had resulted in
the task inheriting the priority of a higher priority task.
pxTCBOfMutexHolder is a pointer to the TCB of the task that is releasing the
mutex. uxOriginalPriority is the task's configured (base) priority. */
#define traceTASK_PRIORITY_DISINHERIT( pxTCBOfMutexHolder, uxOriginalPriority )
#endif
#ifndef traceBLOCKING_ON_QUEUE_RECEIVE
/* Task is about to block because it cannot read from a
queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
upon which the read was attempted. pxCurrentTCB points to the TCB of the
task that attempted the read. */
#define traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue )
#endif
#ifndef traceBLOCKING_ON_QUEUE_SEND
/* Task is about to block because it cannot write to a
queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
upon which the write was attempted. pxCurrentTCB points to the TCB of the
task that attempted the write. */
#define traceBLOCKING_ON_QUEUE_SEND( pxQueue )
#endif
#ifndef configCHECK_FOR_STACK_OVERFLOW
#define configCHECK_FOR_STACK_OVERFLOW 0
#endif
/* The following event macros are embedded in the kernel API calls. */
#ifndef traceMOVED_TASK_TO_READY_STATE
#define traceMOVED_TASK_TO_READY_STATE( pxTCB )
#endif
#ifndef tracePOST_MOVED_TASK_TO_READY_STATE
#define tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
#endif
#ifndef traceQUEUE_CREATE
#define traceQUEUE_CREATE( pxNewQueue )
#endif
#ifndef traceQUEUE_CREATE_FAILED
#define traceQUEUE_CREATE_FAILED( ucQueueType )
#endif
#ifndef traceCREATE_MUTEX
#define traceCREATE_MUTEX( pxNewQueue )
#endif
#ifndef traceCREATE_MUTEX_FAILED
#define traceCREATE_MUTEX_FAILED()
#endif
#ifndef traceGIVE_MUTEX_RECURSIVE
#define traceGIVE_MUTEX_RECURSIVE( pxMutex )
#endif
#ifndef traceGIVE_MUTEX_RECURSIVE_FAILED
#define traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex )
#endif
#ifndef traceTAKE_MUTEX_RECURSIVE
#define traceTAKE_MUTEX_RECURSIVE( pxMutex )
#endif
#ifndef traceTAKE_MUTEX_RECURSIVE_FAILED
#define traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex )
#endif
#ifndef traceCREATE_COUNTING_SEMAPHORE
#define traceCREATE_COUNTING_SEMAPHORE()
#endif
#ifndef traceCREATE_COUNTING_SEMAPHORE_FAILED
#define traceCREATE_COUNTING_SEMAPHORE_FAILED()
#endif
#ifndef traceQUEUE_SEND
#define traceQUEUE_SEND( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FAILED
#define traceQUEUE_SEND_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE
#define traceQUEUE_RECEIVE( pxQueue )
#endif
#ifndef traceQUEUE_PEEK
#define traceQUEUE_PEEK( pxQueue )
#endif
#ifndef traceQUEUE_PEEK_FROM_ISR
#define traceQUEUE_PEEK_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FAILED
#define traceQUEUE_RECEIVE_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FROM_ISR
#define traceQUEUE_SEND_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FROM_ISR_FAILED
#define traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FROM_ISR
#define traceQUEUE_RECEIVE_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FROM_ISR_FAILED
#define traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_PEEK_FROM_ISR_FAILED
#define traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_DELETE
#define traceQUEUE_DELETE( pxQueue )
#endif
#ifndef traceTASK_CREATE
#define traceTASK_CREATE( pxNewTCB )
#endif
#ifndef traceTASK_CREATE_FAILED
#define traceTASK_CREATE_FAILED()
#endif
#ifndef traceTASK_DELETE
#define traceTASK_DELETE( pxTaskToDelete )
#endif
#ifndef traceTASK_DELAY_UNTIL
#define traceTASK_DELAY_UNTIL( x )
#endif
#ifndef traceTASK_DELAY
#define traceTASK_DELAY()
#endif
#ifndef traceTASK_PRIORITY_SET
#define traceTASK_PRIORITY_SET( pxTask, uxNewPriority )
#endif
#ifndef traceTASK_SUSPEND
#define traceTASK_SUSPEND( pxTaskToSuspend )
#endif
#ifndef traceTASK_RESUME
#define traceTASK_RESUME( pxTaskToResume )
#endif
#ifndef traceTASK_RESUME_FROM_ISR
#define traceTASK_RESUME_FROM_ISR( pxTaskToResume )
#endif
#ifndef traceTASK_INCREMENT_TICK
#define traceTASK_INCREMENT_TICK( xTickCount )
#endif
#ifndef traceTIMER_CREATE
#define traceTIMER_CREATE( pxNewTimer )
#endif
#ifndef traceTIMER_CREATE_FAILED
#define traceTIMER_CREATE_FAILED()
#endif
#ifndef traceTIMER_COMMAND_SEND
#define traceTIMER_COMMAND_SEND( xTimer, xMessageID, xMessageValueValue, xReturn )
#endif
#ifndef traceTIMER_EXPIRED
#define traceTIMER_EXPIRED( pxTimer )
#endif
#ifndef traceTIMER_COMMAND_RECEIVED
#define traceTIMER_COMMAND_RECEIVED( pxTimer, xMessageID, xMessageValue )
#endif
#ifndef traceMALLOC
#define traceMALLOC( pvAddress, uiSize )
#endif
#ifndef traceFREE
#define traceFREE( pvAddress, uiSize )
#endif
#ifndef traceEVENT_GROUP_CREATE
#define traceEVENT_GROUP_CREATE( xEventGroup )
#endif
#ifndef traceEVENT_GROUP_CREATE_FAILED
#define traceEVENT_GROUP_CREATE_FAILED()
#endif
#ifndef traceEVENT_GROUP_SYNC_BLOCK
#define traceEVENT_GROUP_SYNC_BLOCK( xEventGroup, uxBitsToSet, uxBitsToWaitFor )
#endif
#ifndef traceEVENT_GROUP_SYNC_END
#define traceEVENT_GROUP_SYNC_END( xEventGroup, uxBitsToSet, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
#endif
#ifndef traceEVENT_GROUP_WAIT_BITS_BLOCK
#define traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor )
#endif
#ifndef traceEVENT_GROUP_WAIT_BITS_END
#define traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
#endif
#ifndef traceEVENT_GROUP_CLEAR_BITS
#define traceEVENT_GROUP_CLEAR_BITS( xEventGroup, uxBitsToClear )
#endif
#ifndef traceEVENT_GROUP_CLEAR_BITS_FROM_ISR
#define traceEVENT_GROUP_CLEAR_BITS_FROM_ISR( xEventGroup, uxBitsToClear )
#endif
#ifndef traceEVENT_GROUP_SET_BITS
#define traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet )
#endif
#ifndef traceEVENT_GROUP_SET_BITS_FROM_ISR
#define traceEVENT_GROUP_SET_BITS_FROM_ISR( xEventGroup, uxBitsToSet )
#endif
#ifndef traceEVENT_GROUP_DELETE
#define traceEVENT_GROUP_DELETE( xEventGroup )
#endif
#ifndef tracePEND_FUNC_CALL
#define tracePEND_FUNC_CALL(xFunctionToPend, pvParameter1, ulParameter2, ret)
#endif
#ifndef tracePEND_FUNC_CALL_FROM_ISR
#define tracePEND_FUNC_CALL_FROM_ISR(xFunctionToPend, pvParameter1, ulParameter2, ret)
#endif
#ifndef traceQUEUE_REGISTRY_ADD
#define traceQUEUE_REGISTRY_ADD(xQueue, pcQueueName)
#endif
#ifndef traceTASK_NOTIFY_TAKE_BLOCK
#define traceTASK_NOTIFY_TAKE_BLOCK()
#endif
#ifndef traceTASK_NOTIFY_TAKE
#define traceTASK_NOTIFY_TAKE()
#endif
#ifndef traceTASK_NOTIFY_WAIT_BLOCK
#define traceTASK_NOTIFY_WAIT_BLOCK()
#endif
#ifndef traceTASK_NOTIFY_WAIT
#define traceTASK_NOTIFY_WAIT()
#endif
#ifndef traceTASK_NOTIFY
#define traceTASK_NOTIFY()
#endif
#ifndef traceTASK_NOTIFY_FROM_ISR
#define traceTASK_NOTIFY_FROM_ISR()
#endif
#ifndef traceTASK_NOTIFY_GIVE_FROM_ISR
#define traceTASK_NOTIFY_GIVE_FROM_ISR()
#endif
#ifndef configGENERATE_RUN_TIME_STATS
#define configGENERATE_RUN_TIME_STATS 0
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
#ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
#error If configGENERATE_RUN_TIME_STATS is defined then portCONFIGURE_TIMER_FOR_RUN_TIME_STATS must also be defined. portCONFIGURE_TIMER_FOR_RUN_TIME_STATS should call a port layer function to setup a peripheral timer/counter that can then be used as the run time counter time base.
#endif /* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS */
#ifndef portGET_RUN_TIME_COUNTER_VALUE
#ifndef portALT_GET_RUN_TIME_COUNTER_VALUE
#error If configGENERATE_RUN_TIME_STATS is defined then either portGET_RUN_TIME_COUNTER_VALUE or portALT_GET_RUN_TIME_COUNTER_VALUE must also be defined. See the examples provided and the FreeRTOS web site for more information.
#endif /* portALT_GET_RUN_TIME_COUNTER_VALUE */
#endif /* portGET_RUN_TIME_COUNTER_VALUE */
#endif /* configGENERATE_RUN_TIME_STATS */
#ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS()
#endif
#ifndef configUSE_MALLOC_FAILED_HOOK
#define configUSE_MALLOC_FAILED_HOOK 0
#endif
#ifndef portPRIVILEGE_BIT
#define portPRIVILEGE_BIT ( ( UBaseType_t ) 0x00 )
#endif
#ifndef portYIELD_WITHIN_API
#define portYIELD_WITHIN_API portYIELD
#endif
#ifndef portSUPPRESS_TICKS_AND_SLEEP
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime )
#endif
#ifndef configEXPECTED_IDLE_TIME_BEFORE_SLEEP
#define configEXPECTED_IDLE_TIME_BEFORE_SLEEP 2
#endif
#if configEXPECTED_IDLE_TIME_BEFORE_SLEEP < 2
#error configEXPECTED_IDLE_TIME_BEFORE_SLEEP must not be less than 2
#endif
#ifndef configUSE_TICKLESS_IDLE
#define configUSE_TICKLESS_IDLE 0
#endif
#ifndef configPRE_SLEEP_PROCESSING
#define configPRE_SLEEP_PROCESSING( x )
#endif
#ifndef configPOST_SLEEP_PROCESSING
#define configPOST_SLEEP_PROCESSING( x )
#endif
#ifndef configUSE_QUEUE_SETS
#define configUSE_QUEUE_SETS 0
#endif
#ifndef portTASK_USES_FLOATING_POINT
#define portTASK_USES_FLOATING_POINT()
#endif
#ifndef configUSE_TIME_SLICING
#define configUSE_TIME_SLICING 1
#endif
#ifndef configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS
#define configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS 0
#endif
#ifndef configUSE_STATS_FORMATTING_FUNCTIONS
#define configUSE_STATS_FORMATTING_FUNCTIONS 0
#endif
#ifndef portASSERT_IF_INTERRUPT_PRIORITY_INVALID
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID()
#endif
#ifndef configUSE_TRACE_FACILITY
#define configUSE_TRACE_FACILITY 0
#endif
#ifndef mtCOVERAGE_TEST_MARKER
#define mtCOVERAGE_TEST_MARKER()
#endif
#ifndef mtCOVERAGE_TEST_DELAY
#define mtCOVERAGE_TEST_DELAY()
#endif
#ifndef portASSERT_IF_IN_ISR
#define portASSERT_IF_IN_ISR()
#endif
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 0
#endif
#ifndef configAPPLICATION_ALLOCATED_HEAP
#define configAPPLICATION_ALLOCATED_HEAP 0
#endif
#ifndef configUSE_TASK_NOTIFICATIONS
#define configUSE_TASK_NOTIFICATIONS 1
#endif
#ifndef portTICK_TYPE_IS_ATOMIC
#define portTICK_TYPE_IS_ATOMIC 0
#endif
#ifndef configSUPPORT_STATIC_ALLOCATION
/* Defaults to 0 for backward compatibility. */
#define configSUPPORT_STATIC_ALLOCATION 0
#endif
#ifndef configSUPPORT_DYNAMIC_ALLOCATION
/* Defaults to 1 for backward compatibility. */
#define configSUPPORT_DYNAMIC_ALLOCATION 1
#endif
/* Sanity check the configuration. */
#if( configUSE_TICKLESS_IDLE != 0 )
#if( INCLUDE_vTaskSuspend != 1 )
#error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
#endif /* INCLUDE_vTaskSuspend */
#endif /* configUSE_TICKLESS_IDLE */
#if( ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 0 ) )
#error configSUPPORT_STATIC_ALLOCATION and configSUPPORT_DYNAMIC_ALLOCATION cannot both be 0, but can both be 1.
#endif
#if( ( configUSE_RECURSIVE_MUTEXES == 1 ) && ( configUSE_MUTEXES != 1 ) )
#error configUSE_MUTEXES must be set to 1 to use recursive mutexes
#endif
#if( portTICK_TYPE_IS_ATOMIC == 0 )
/* Either variables of tick type cannot be read atomically, or
portTICK_TYPE_IS_ATOMIC was not set - map the critical sections used when
the tick count is returned to the standard critical section macros. */
#define portTICK_TYPE_ENTER_CRITICAL() portENTER_CRITICAL()
#define portTICK_TYPE_EXIT_CRITICAL() portEXIT_CRITICAL()
#define portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR()
#define portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( x ) portCLEAR_INTERRUPT_MASK_FROM_ISR( ( x ) )
#else
/* The tick type can be read atomically, so critical sections used when the
tick count is returned can be defined away. */
#define portTICK_TYPE_ENTER_CRITICAL()
#define portTICK_TYPE_EXIT_CRITICAL()
#define portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR() 0
#define portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( x ) ( void ) x
#endif
/* Definitions to allow backward compatibility with FreeRTOS versions prior to
V8 if desired. */
#ifndef configENABLE_BACKWARD_COMPATIBILITY
#define configENABLE_BACKWARD_COMPATIBILITY 1
#endif
#if configENABLE_BACKWARD_COMPATIBILITY == 1
#define eTaskStateGet eTaskGetState
#define portTickType TickType_t
#define xTaskHandle TaskHandle_t
#define xQueueHandle QueueHandle_t
#define xSemaphoreHandle SemaphoreHandle_t
#define xQueueSetHandle QueueSetHandle_t
#define xQueueSetMemberHandle QueueSetMemberHandle_t
#define xTimeOutType TimeOut_t
#define xMemoryRegion MemoryRegion_t
#define xTaskParameters TaskParameters_t
#define xTaskStatusType TaskStatus_t
#define xTimerHandle TimerHandle_t
#define xCoRoutineHandle CoRoutineHandle_t
#define pdTASK_HOOK_CODE TaskHookFunction_t
#define portTICK_RATE_MS portTICK_PERIOD_MS
#define pcTaskGetTaskName pcTaskGetName
#define pcTimerGetTimerName pcTimerGetName
#define pcQueueGetQueueName pcQueueGetName
#define vTaskGetTaskInfo vTaskGetInfo
/* Backward compatibility within the scheduler code only - these definitions
are not really required but are included for completeness. */
#define tmrTIMER_CALLBACK TimerCallbackFunction_t
#define pdTASK_CODE TaskFunction_t
#define xListItem ListItem_t
#define xList List_t
#endif /* configENABLE_BACKWARD_COMPATIBILITY */
#if( configUSE_ALTERNATIVE_API != 0 )
#error The alternative API was deprecated some time ago, and was removed in FreeRTOS V9.0 0
#endif
/* Set configUSE_TASK_FPU_SUPPORT to 0 to omit floating point support even
if floating point hardware is otherwise supported by the FreeRTOS port in use.
This constant is not supported by all FreeRTOS ports that include floating
point support. */
#ifndef configUSE_TASK_FPU_SUPPORT
#define configUSE_TASK_FPU_SUPPORT 1
#endif
/*
* In line with software engineering best practice, FreeRTOS implements a strict
* data hiding policy, so the real structures used by FreeRTOS to maintain the
* state of tasks, queues, semaphores, etc. are not accessible to the application
* code. However, if the application writer wants to statically allocate such
* an object then the size of the object needs to be know. Dummy structures
* that are guaranteed to have the same size and alignment requirements of the
* real objects are used for this purpose. The dummy list and list item
* structures below are used for inclusion in such a dummy structure.
*/
struct xSTATIC_LIST_ITEM
{
TickType_t xDummy1;
void *pvDummy2[ 4 ];
};
typedef struct xSTATIC_LIST_ITEM StaticListItem_t;
/* See the comments above the struct xSTATIC_LIST_ITEM definition. */
struct xSTATIC_MINI_LIST_ITEM
{
TickType_t xDummy1;
void *pvDummy2[ 2 ];
};
typedef struct xSTATIC_MINI_LIST_ITEM StaticMiniListItem_t;
/* See the comments above the struct xSTATIC_LIST_ITEM definition. */
typedef struct xSTATIC_LIST
{
UBaseType_t uxDummy1;
void *pvDummy2;
StaticMiniListItem_t xDummy3;
} StaticList_t;
/*
* In line with software engineering best practice, especially when supplying a
* library that is likely to change in future versions, FreeRTOS implements a
* strict data hiding policy. This means the Task structure used internally by
* FreeRTOS is not accessible to application code. However, if the application
* writer wants to statically allocate the memory required to create a task then
* the size of the task object needs to be know. The StaticTask_t structure
* below is provided for this purpose. Its sizes and alignment requirements are
* guaranteed to match those of the genuine structure, no matter which
* architecture is being used, and no matter how the values in FreeRTOSConfig.h
* are set. Its contents are somewhat obfuscated in the hope users will
* recognise that it would be unwise to make direct use of the structure members.
*/
typedef struct xSTATIC_TCB
{
void *pxDummy1;
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS xDummy2;
#endif
StaticListItem_t xDummy3[ 2 ];
UBaseType_t uxDummy5;
void *pxDummy6;
uint8_t ucDummy7[ configMAX_TASK_NAME_LEN ];
#if ( portSTACK_GROWTH > 0 )
void *pxDummy8;
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxDummy9;
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxDummy10[ 2 ];
#endif
#if ( configUSE_MUTEXES == 1 )
UBaseType_t uxDummy12[ 2 ];
#endif
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
void *pxDummy14;
#endif
#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
void *pvDummy15[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
uint32_t ulDummy16;
#endif
#if ( configUSE_NEWLIB_REENTRANT == 1 )
struct _reent xDummy17;
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
uint32_t ulDummy18;
uint8_t ucDummy19;
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t uxDummy20;
#endif
} StaticTask_t;
/*
* In line with software engineering best practice, especially when supplying a
* library that is likely to change in future versions, FreeRTOS implements a
* strict data hiding policy. This means the Queue structure used internally by
* FreeRTOS is not accessible to application code. However, if the application
* writer wants to statically allocate the memory required to create a queue
* then the size of the queue object needs to be know. The StaticQueue_t
* structure below is provided for this purpose. Its sizes and alignment
* requirements are guaranteed to match those of the genuine structure, no
* matter which architecture is being used, and no matter how the values in
* FreeRTOSConfig.h are set. Its contents are somewhat obfuscated in the hope
* users will recognise that it would be unwise to make direct use of the
* structure members.
*/
typedef struct xSTATIC_QUEUE
{
void *pvDummy1[ 3 ];
union
{
void *pvDummy2;
UBaseType_t uxDummy2;
} u;
StaticList_t xDummy3[ 2 ];
UBaseType_t uxDummy4[ 3 ];
uint8_t ucDummy5[ 2 ];
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucDummy6;
#endif
#if ( configUSE_QUEUE_SETS == 1 )
void *pvDummy7;
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxDummy8;
uint8_t ucDummy9;
#endif
} StaticQueue_t;
typedef StaticQueue_t StaticSemaphore_t;
/*
* In line with software engineering best practice, especially when supplying a
* library that is likely to change in future versions, FreeRTOS implements a
* strict data hiding policy. This means the event group structure used
* internally by FreeRTOS is not accessible to application code. However, if
* the application writer wants to statically allocate the memory required to
* create an event group then the size of the event group object needs to be
* know. The StaticEventGroup_t structure below is provided for this purpose.
* Its sizes and alignment requirements are guaranteed to match those of the
* genuine structure, no matter which architecture is being used, and no matter
* how the values in FreeRTOSConfig.h are set. Its contents are somewhat
* obfuscated in the hope users will recognise that it would be unwise to make
* direct use of the structure members.
*/
typedef struct xSTATIC_EVENT_GROUP
{
TickType_t xDummy1;
StaticList_t xDummy2;
#if( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxDummy3;
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucDummy4;
#endif
} StaticEventGroup_t;
/*
* In line with software engineering best practice, especially when supplying a
* library that is likely to change in future versions, FreeRTOS implements a
* strict data hiding policy. This means the software timer structure used
* internally by FreeRTOS is not accessible to application code. However, if
* the application writer wants to statically allocate the memory required to
* create a software timer then the size of the queue object needs to be know.
* The StaticTimer_t structure below is provided for this purpose. Its sizes
* and alignment requirements are guaranteed to match those of the genuine
* structure, no matter which architecture is being used, and no matter how the
* values in FreeRTOSConfig.h are set. Its contents are somewhat obfuscated in
* the hope users will recognise that it would be unwise to make direct use of
* the structure members.
*/
typedef struct xSTATIC_TIMER
{
void *pvDummy1;
StaticListItem_t xDummy2;
TickType_t xDummy3;
UBaseType_t uxDummy4;
void *pvDummy5[ 2 ];
#if( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxDummy6;
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucDummy7;
#endif
} StaticTimer_t;
#ifdef __cplusplus
}
#endif
#endif /* INC_FREERTOS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
/*-----------------------------------------------------------
* Application specific definitions.
*
* These definitions should be adjusted for your particular hardware and
* application requirements.
*
* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
*
* See http://www.freertos.org/a00110.html.
*----------------------------------------------------------*/
/* Ensure stdint is only used by the compiler, and not the assembler. */
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>
extern uint32_t SystemCoreClock;
#endif
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 0
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ (SystemCoreClock)
#define configTICK_RATE_HZ ((TickType_t)1000)
#define configMAX_PRIORITIES (7)
#define configMINIMAL_STACK_SIZE ((uint16_t)128)
#define configTOTAL_HEAP_SIZE ((size_t)(15 * 1024))
#define configMAX_TASK_NAME_LEN (16)
#define configUSE_TRACE_FACILITY 1
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 1
#define configUSE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 8
#define configCHECK_FOR_STACK_OVERFLOW 0
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED_HOOK 0
#define configUSE_APPLICATION_TASK_TAG 0
#define configUSE_COUNTING_SEMAPHORES 1
#define configGENERATE_RUN_TIME_STATS 0
/* Co-routine definitions. */
#define configUSE_CO_ROUTINES 0
#define configMAX_CO_ROUTINE_PRIORITIES (2)
/* Software timer definitions. */
#define configUSE_TIMERS 0
#define configTIMER_TASK_PRIORITY (2)
#define configTIMER_QUEUE_LENGTH 10
#define configTIMER_TASK_STACK_DEPTH (configMINIMAL_STACK_SIZE * 2)
/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 0
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4 /* 15 priority levels */
#endif
/* The lowest interrupt priority that can be used in a call to a "set priority"
function. */
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0xf
/* The highest interrupt priority that can be used by any interrupt service
routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
PRIORITY THAN THIS! (higher priorities are lower numeric values. */
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
/* Interrupt priorities used by the kernel port layer itself. These are generic
to all Cortex-M ports, and do not rely on any particular library functions. */
#define configKERNEL_INTERRUPT_PRIORITY ( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* Normal assert() semantics without relying on the provision of an assert.h
header file. */
#define configASSERT( x ) if( ( x ) == 0 ) { taskDISABLE_INTERRUPTS(); for( ;; ); }
/* Definitions that map the FreeRTOS port interrupt handlers to their CMSIS
standard names. */
#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler
/* IMPORTANT: This define MUST be commented when used with STM32Cube firmware,
to prevent overwriting SysTick_Handler defined within STM32Cube HAL */
/* #define xPortSysTickHandler SysTick_Handler */
#endif /* FREERTOS_CONFIG_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef STACK_MACROS_H
#define STACK_MACROS_H
/*
* Call the stack overflow hook function if the stack of the task being swapped
* out is currently overflowed, or looks like it might have overflowed in the
* past.
*
* Setting configCHECK_FOR_STACK_OVERFLOW to 1 will cause the macro to check
* the current stack state only - comparing the current top of stack value to
* the stack limit. Setting configCHECK_FOR_STACK_OVERFLOW to greater than 1
* will also cause the last few stack bytes to be checked to ensure the value
* to which the bytes were set when the task was created have not been
* overwritten. Note this second test does not guarantee that an overflowed
* stack will always be recognised.
*/
/*-----------------------------------------------------------*/
#if( ( configCHECK_FOR_STACK_OVERFLOW == 1 ) && ( portSTACK_GROWTH < 0 ) )
/* Only the current stack state is to be checked. */
#define taskCHECK_FOR_STACK_OVERFLOW() \
{ \
/* Is the currently saved stack pointer within the stack limit? */ \
if( pxCurrentTCB->pxTopOfStack <= pxCurrentTCB->pxStack ) \
{ \
vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
}
#endif /* configCHECK_FOR_STACK_OVERFLOW == 1 */
/*-----------------------------------------------------------*/
#if( ( configCHECK_FOR_STACK_OVERFLOW == 1 ) && ( portSTACK_GROWTH > 0 ) )
/* Only the current stack state is to be checked. */
#define taskCHECK_FOR_STACK_OVERFLOW() \
{ \
\
/* Is the currently saved stack pointer within the stack limit? */ \
if( pxCurrentTCB->pxTopOfStack >= pxCurrentTCB->pxEndOfStack ) \
{ \
vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
}
#endif /* configCHECK_FOR_STACK_OVERFLOW == 1 */
/*-----------------------------------------------------------*/
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH < 0 ) )
#define taskCHECK_FOR_STACK_OVERFLOW() \
{ \
const uint32_t * const pulStack = ( uint32_t * ) pxCurrentTCB->pxStack; \
const uint32_t ulCheckValue = ( uint32_t ) 0xa5a5a5a5; \
\
if( ( pulStack[ 0 ] != ulCheckValue ) || \
( pulStack[ 1 ] != ulCheckValue ) || \
( pulStack[ 2 ] != ulCheckValue ) || \
( pulStack[ 3 ] != ulCheckValue ) ) \
{ \
vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
}
#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
/*-----------------------------------------------------------*/
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH > 0 ) )
#define taskCHECK_FOR_STACK_OVERFLOW() \
{ \
int8_t *pcEndOfStack = ( int8_t * ) pxCurrentTCB->pxEndOfStack; \
static const uint8_t ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
\
\
pcEndOfStack -= sizeof( ucExpectedStackBytes ); \
\
/* Has the extremity of the task stack ever been written over? */ \
if( memcmp( ( void * ) pcEndOfStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
{ \
vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
}
#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
/*-----------------------------------------------------------*/
/* Remove stack overflow macro if not being used. */
#ifndef taskCHECK_FOR_STACK_OVERFLOW
#define taskCHECK_FOR_STACK_OVERFLOW()
#endif
#endif /* STACK_MACROS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef CO_ROUTINE_H
#define CO_ROUTINE_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h must appear in source files before include croutine.h"
#endif
#include "list.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Used to hide the implementation of the co-routine control block. The
control block structure however has to be included in the header due to
the macro implementation of the co-routine functionality. */
typedef void * CoRoutineHandle_t;
/* Defines the prototype to which co-routine functions must conform. */
typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );
typedef struct corCoRoutineControlBlock
{
crCOROUTINE_CODE pxCoRoutineFunction;
ListItem_t xGenericListItem; /*< List item used to place the CRCB in ready and blocked queues. */
ListItem_t xEventListItem; /*< List item used to place the CRCB in event lists. */
UBaseType_t uxPriority; /*< The priority of the co-routine in relation to other co-routines. */
UBaseType_t uxIndex; /*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
uint16_t uxState; /*< Used internally by the co-routine implementation. */
} CRCB_t; /* Co-routine control block. Note must be identical in size down to uxPriority with TCB_t. */
/**
* croutine. h
*<pre>
BaseType_t xCoRoutineCreate(
crCOROUTINE_CODE pxCoRoutineCode,
UBaseType_t uxPriority,
UBaseType_t uxIndex
);</pre>
*
* Create a new co-routine and add it to the list of co-routines that are
* ready to run.
*
* @param pxCoRoutineCode Pointer to the co-routine function. Co-routine
* functions require special syntax - see the co-routine section of the WEB
* documentation for more information.
*
* @param uxPriority The priority with respect to other co-routines at which
* the co-routine will run.
*
* @param uxIndex Used to distinguish between different co-routines that
* execute the same function. See the example below and the co-routine section
* of the WEB documentation for further information.
*
* @return pdPASS if the co-routine was successfully created and added to a ready
* list, otherwise an error code defined with ProjDefs.h.
*
* Example usage:
<pre>
// Co-routine to be created.
void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
// This may not be necessary for const variables.
static const char cLedToFlash[ 2 ] = { 5, 6 };
static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// This co-routine just delays for a fixed period, then toggles
// an LED. Two co-routines are created using this function, so
// the uxIndex parameter is used to tell the co-routine which
// LED to flash and how int32_t to delay. This assumes xQueue has
// already been created.
vParTestToggleLED( cLedToFlash[ uxIndex ] );
crDELAY( xHandle, uxFlashRates[ uxIndex ] );
}
// Must end every co-routine with a call to crEND();
crEND();
}
// Function that creates two co-routines.
void vOtherFunction( void )
{
uint8_t ucParameterToPass;
TaskHandle_t xHandle;
// Create two co-routines at priority 0. The first is given index 0
// so (from the code above) toggles LED 5 every 200 ticks. The second
// is given index 1 so toggles LED 6 every 400 ticks.
for( uxIndex = 0; uxIndex < 2; uxIndex++ )
{
xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
}
}
</pre>
* \defgroup xCoRoutineCreate xCoRoutineCreate
* \ingroup Tasks
*/
BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex );
/**
* croutine. h
*<pre>
void vCoRoutineSchedule( void );</pre>
*
* Run a co-routine.
*
* vCoRoutineSchedule() executes the highest priority co-routine that is able
* to run. The co-routine will execute until it either blocks, yields or is
* preempted by a task. Co-routines execute cooperatively so one
* co-routine cannot be preempted by another, but can be preempted by a task.
*
* If an application comprises of both tasks and co-routines then
* vCoRoutineSchedule should be called from the idle task (in an idle task
* hook).
*
* Example usage:
<pre>
// This idle task hook will schedule a co-routine each time it is called.
// The rest of the idle task will execute between co-routine calls.
void vApplicationIdleHook( void )
{
vCoRoutineSchedule();
}
// Alternatively, if you do not require any other part of the idle task to
// execute, the idle task hook can call vCoRoutineScheduler() within an
// infinite loop.
void vApplicationIdleHook( void )
{
for( ;; )
{
vCoRoutineSchedule();
}
}
</pre>
* \defgroup vCoRoutineSchedule vCoRoutineSchedule
* \ingroup Tasks
*/
void vCoRoutineSchedule( void );
/**
* croutine. h
* <pre>
crSTART( CoRoutineHandle_t xHandle );</pre>
*
* This macro MUST always be called at the start of a co-routine function.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static int32_t ulAVariable;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Co-routine functionality goes here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crSTART crSTART
* \ingroup Tasks
*/
#define crSTART( pxCRCB ) switch( ( ( CRCB_t * )( pxCRCB ) )->uxState ) { case 0:
/**
* croutine. h
* <pre>
crEND();</pre>
*
* This macro MUST always be called at the end of a co-routine function.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static int32_t ulAVariable;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Co-routine functionality goes here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crSTART crSTART
* \ingroup Tasks
*/
#define crEND() }
/*
* These macros are intended for internal use by the co-routine implementation
* only. The macros should not be used directly by application writers.
*/
#define crSET_STATE0( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = (__LINE__ * 2); return; case (__LINE__ * 2):
#define crSET_STATE1( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = ((__LINE__ * 2)+1); return; case ((__LINE__ * 2)+1):
/**
* croutine. h
*<pre>
crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );</pre>
*
* Delay a co-routine for a fixed period of time.
*
* crDELAY can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* @param xHandle The handle of the co-routine to delay. This is the xHandle
* parameter of the co-routine function.
*
* @param xTickToDelay The number of ticks that the co-routine should delay
* for. The actual amount of time this equates to is defined by
* configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant portTICK_PERIOD_MS
* can be used to convert ticks to milliseconds.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
// This may not be necessary for const variables.
// We are to delay for 200ms.
static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Delay for 200ms.
crDELAY( xHandle, xDelayTime );
// Do something here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crDELAY crDELAY
* \ingroup Tasks
*/
#define crDELAY( xHandle, xTicksToDelay ) \
if( ( xTicksToDelay ) > 0 ) \
{ \
vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \
} \
crSET_STATE0( ( xHandle ) );
/**
* <pre>
crQUEUE_SEND(
CoRoutineHandle_t xHandle,
QueueHandle_t pxQueue,
void *pvItemToQueue,
TickType_t xTicksToWait,
BaseType_t *pxResult
)</pre>
*
* The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
* equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
*
* crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
* xQueueSend() and xQueueReceive() can only be used from tasks.
*
* crQUEUE_SEND can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xHandle The handle of the calling co-routine. This is the xHandle
* parameter of the co-routine function.
*
* @param pxQueue The handle of the queue on which the data will be posted.
* The handle is obtained as the return value when the queue is created using
* the xQueueCreate() API function.
*
* @param pvItemToQueue A pointer to the data being posted onto the queue.
* The number of bytes of each queued item is specified when the queue is
* created. This number of bytes is copied from pvItemToQueue into the queue
* itself.
*
* @param xTickToDelay The number of ticks that the co-routine should block
* to wait for space to become available on the queue, should space not be
* available immediately. The actual amount of time this equates to is defined
* by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
* portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
* below).
*
* @param pxResult The variable pointed to by pxResult will be set to pdPASS if
* data was successfully posted onto the queue, otherwise it will be set to an
* error defined within ProjDefs.h.
*
* Example usage:
<pre>
// Co-routine function that blocks for a fixed period then posts a number onto
// a queue.
static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static BaseType_t xNumberToPost = 0;
static BaseType_t xResult;
// Co-routines must begin with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// This assumes the queue has already been created.
crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
if( xResult != pdPASS )
{
// The message was not posted!
}
// Increment the number to be posted onto the queue.
xNumberToPost++;
// Delay for 100 ticks.
crDELAY( xHandle, 100 );
}
// Co-routines must end with a call to crEND().
crEND();
}</pre>
* \defgroup crQUEUE_SEND crQUEUE_SEND
* \ingroup Tasks
*/
#define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult ) \
{ \
*( pxResult ) = xQueueCRSend( ( pxQueue) , ( pvItemToQueue) , ( xTicksToWait ) ); \
if( *( pxResult ) == errQUEUE_BLOCKED ) \
{ \
crSET_STATE0( ( xHandle ) ); \
*pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 ); \
} \
if( *pxResult == errQUEUE_YIELD ) \
{ \
crSET_STATE1( ( xHandle ) ); \
*pxResult = pdPASS; \
} \
}
/**
* croutine. h
* <pre>
crQUEUE_RECEIVE(
CoRoutineHandle_t xHandle,
QueueHandle_t pxQueue,
void *pvBuffer,
TickType_t xTicksToWait,
BaseType_t *pxResult
)</pre>
*
* The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
* equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
*
* crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
* xQueueSend() and xQueueReceive() can only be used from tasks.
*
* crQUEUE_RECEIVE can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xHandle The handle of the calling co-routine. This is the xHandle
* parameter of the co-routine function.
*
* @param pxQueue The handle of the queue from which the data will be received.
* The handle is obtained as the return value when the queue is created using
* the xQueueCreate() API function.
*
* @param pvBuffer The buffer into which the received item is to be copied.
* The number of bytes of each queued item is specified when the queue is
* created. This number of bytes is copied into pvBuffer.
*
* @param xTickToDelay The number of ticks that the co-routine should block
* to wait for data to become available from the queue, should data not be
* available immediately. The actual amount of time this equates to is defined
* by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
* portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
* crQUEUE_SEND example).
*
* @param pxResult The variable pointed to by pxResult will be set to pdPASS if
* data was successfully retrieved from the queue, otherwise it will be set to
* an error code as defined within ProjDefs.h.
*
* Example usage:
<pre>
// A co-routine receives the number of an LED to flash from a queue. It
// blocks on the queue until the number is received.
static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static BaseType_t xResult;
static UBaseType_t uxLEDToFlash;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Wait for data to become available on the queue.
crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
if( xResult == pdPASS )
{
// We received the LED to flash - flash it!
vParTestToggleLED( uxLEDToFlash );
}
}
crEND();
}</pre>
* \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
* \ingroup Tasks
*/
#define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult ) \
{ \
*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), ( xTicksToWait ) ); \
if( *( pxResult ) == errQUEUE_BLOCKED ) \
{ \
crSET_STATE0( ( xHandle ) ); \
*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), 0 ); \
} \
if( *( pxResult ) == errQUEUE_YIELD ) \
{ \
crSET_STATE1( ( xHandle ) ); \
*( pxResult ) = pdPASS; \
} \
}
/**
* croutine. h
* <pre>
crQUEUE_SEND_FROM_ISR(
QueueHandle_t pxQueue,
void *pvItemToQueue,
BaseType_t xCoRoutinePreviouslyWoken
)</pre>
*
* The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
* co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
* functions used by tasks.
*
* crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
* pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
* xQueueReceiveFromISR() can only be used to pass data between a task and and
* ISR.
*
* crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
* that is being used from within a co-routine.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
* the same queue multiple times from a single interrupt. The first call
* should always pass in pdFALSE. Subsequent calls should pass in
* the value returned from the previous call.
*
* @return pdTRUE if a co-routine was woken by posting onto the queue. This is
* used by the ISR to determine if a context switch may be required following
* the ISR.
*
* Example usage:
<pre>
// A co-routine that blocks on a queue waiting for characters to be received.
static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
char cRxedChar;
BaseType_t xResult;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Wait for data to become available on the queue. This assumes the
// queue xCommsRxQueue has already been created!
crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
// Was a character received?
if( xResult == pdPASS )
{
// Process the character here.
}
}
// All co-routines must end with a call to crEND().
crEND();
}
// An ISR that uses a queue to send characters received on a serial port to
// a co-routine.
void vUART_ISR( void )
{
char cRxedChar;
BaseType_t xCRWokenByPost = pdFALSE;
// We loop around reading characters until there are none left in the UART.
while( UART_RX_REG_NOT_EMPTY() )
{
// Obtain the character from the UART.
cRxedChar = UART_RX_REG;
// Post the character onto a queue. xCRWokenByPost will be pdFALSE
// the first time around the loop. If the post causes a co-routine
// to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
// In this manner we can ensure that if more than one co-routine is
// blocked on the queue only one is woken by this ISR no matter how
// many characters are posted to the queue.
xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
}
}</pre>
* \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
* \ingroup Tasks
*/
#define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
/**
* croutine. h
* <pre>
crQUEUE_SEND_FROM_ISR(
QueueHandle_t pxQueue,
void *pvBuffer,
BaseType_t * pxCoRoutineWoken
)</pre>
*
* The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
* co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
* functions used by tasks.
*
* crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
* pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
* xQueueReceiveFromISR() can only be used to pass data between a task and and
* ISR.
*
* crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
* from a queue that is being used from within a co-routine (a co-routine
* posted to the queue).
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvBuffer A pointer to a buffer into which the received item will be
* placed. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from the queue into
* pvBuffer.
*
* @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
* available on the queue. If crQUEUE_RECEIVE_FROM_ISR causes such a
* co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
* *pxCoRoutineWoken will remain unchanged.
*
* @return pdTRUE an item was successfully received from the queue, otherwise
* pdFALSE.
*
* Example usage:
<pre>
// A co-routine that posts a character to a queue then blocks for a fixed
// period. The character is incremented each time.
static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// cChar holds its value while this co-routine is blocked and must therefore
// be declared static.
static char cCharToTx = 'a';
BaseType_t xResult;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Send the next character to the queue.
crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
if( xResult == pdPASS )
{
// The character was successfully posted to the queue.
}
else
{
// Could not post the character to the queue.
}
// Enable the UART Tx interrupt to cause an interrupt in this
// hypothetical UART. The interrupt will obtain the character
// from the queue and send it.
ENABLE_RX_INTERRUPT();
// Increment to the next character then block for a fixed period.
// cCharToTx will maintain its value across the delay as it is
// declared static.
cCharToTx++;
if( cCharToTx > 'x' )
{
cCharToTx = 'a';
}
crDELAY( 100 );
}
// All co-routines must end with a call to crEND().
crEND();
}
// An ISR that uses a queue to receive characters to send on a UART.
void vUART_ISR( void )
{
char cCharToTx;
BaseType_t xCRWokenByPost = pdFALSE;
while( UART_TX_REG_EMPTY() )
{
// Are there any characters in the queue waiting to be sent?
// xCRWokenByPost will automatically be set to pdTRUE if a co-routine
// is woken by the post - ensuring that only a single co-routine is
// woken no matter how many times we go around this loop.
if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
{
SEND_CHARACTER( cCharToTx );
}
}
}</pre>
* \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
* \ingroup Tasks
*/
#define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
/*
* This function is intended for internal use by the co-routine macros only.
* The macro nature of the co-routine implementation requires that the
* prototype appears here. The function should not be used by application
* writers.
*
* Removes the current co-routine from its ready list and places it in the
* appropriate delayed list.
*/
void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList );
/*
* This function is intended for internal use by the queue implementation only.
* The function should not be used by application writers.
*
* Removes the highest priority co-routine from the event list and places it in
* the pending ready list.
*/
BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList );
#ifdef __cplusplus
}
#endif
#endif /* CO_ROUTINE_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef DEPRECATED_DEFINITIONS_H
#define DEPRECATED_DEFINITIONS_H
/* Each FreeRTOS port has a unique portmacro.h header file. Originally a
pre-processor definition was used to ensure the pre-processor found the correct
portmacro.h file for the port being used. That scheme was deprecated in favour
of setting the compiler's include path such that it found the correct
portmacro.h file - removing the need for the constant and allowing the
portmacro.h file to be located anywhere in relation to the port being used. The
definitions below remain in the code for backward compatibility only. New
projects should not use them. */
#ifdef OPEN_WATCOM_INDUSTRIAL_PC_PORT
#include "..\..\Source\portable\owatcom\16bitdos\pc\portmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef OPEN_WATCOM_FLASH_LITE_186_PORT
#include "..\..\Source\portable\owatcom\16bitdos\flsh186\portmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef GCC_MEGA_AVR
#include "../portable/GCC/ATMega323/portmacro.h"
#endif
#ifdef IAR_MEGA_AVR
#include "../portable/IAR/ATMega323/portmacro.h"
#endif
#ifdef MPLAB_PIC24_PORT
#include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
#endif
#ifdef MPLAB_DSPIC_PORT
#include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
#endif
#ifdef MPLAB_PIC18F_PORT
#include "../../Source/portable/MPLAB/PIC18F/portmacro.h"
#endif
#ifdef MPLAB_PIC32MX_PORT
#include "../../Source/portable/MPLAB/PIC32MX/portmacro.h"
#endif
#ifdef _FEDPICC
#include "libFreeRTOS/Include/portmacro.h"
#endif
#ifdef SDCC_CYGNAL
#include "../../Source/portable/SDCC/Cygnal/portmacro.h"
#endif
#ifdef GCC_ARM7
#include "../../Source/portable/GCC/ARM7_LPC2000/portmacro.h"
#endif
#ifdef GCC_ARM7_ECLIPSE
#include "portmacro.h"
#endif
#ifdef ROWLEY_LPC23xx
#include "../../Source/portable/GCC/ARM7_LPC23xx/portmacro.h"
#endif
#ifdef IAR_MSP430
#include "..\..\Source\portable\IAR\MSP430\portmacro.h"
#endif
#ifdef GCC_MSP430
#include "../../Source/portable/GCC/MSP430F449/portmacro.h"
#endif
#ifdef ROWLEY_MSP430
#include "../../Source/portable/Rowley/MSP430F449/portmacro.h"
#endif
#ifdef ARM7_LPC21xx_KEIL_RVDS
#include "..\..\Source\portable\RVDS\ARM7_LPC21xx\portmacro.h"
#endif
#ifdef SAM7_GCC
#include "../../Source/portable/GCC/ARM7_AT91SAM7S/portmacro.h"
#endif
#ifdef SAM7_IAR
#include "..\..\Source\portable\IAR\AtmelSAM7S64\portmacro.h"
#endif
#ifdef SAM9XE_IAR
#include "..\..\Source\portable\IAR\AtmelSAM9XE\portmacro.h"
#endif
#ifdef LPC2000_IAR
#include "..\..\Source\portable\IAR\LPC2000\portmacro.h"
#endif
#ifdef STR71X_IAR
#include "..\..\Source\portable\IAR\STR71x\portmacro.h"
#endif
#ifdef STR75X_IAR
#include "..\..\Source\portable\IAR\STR75x\portmacro.h"
#endif
#ifdef STR75X_GCC
#include "..\..\Source\portable\GCC\STR75x\portmacro.h"
#endif
#ifdef STR91X_IAR
#include "..\..\Source\portable\IAR\STR91x\portmacro.h"
#endif
#ifdef GCC_H8S
#include "../../Source/portable/GCC/H8S2329/portmacro.h"
#endif
#ifdef GCC_AT91FR40008
#include "../../Source/portable/GCC/ARM7_AT91FR40008/portmacro.h"
#endif
#ifdef RVDS_ARMCM3_LM3S102
#include "../../Source/portable/RVDS/ARM_CM3/portmacro.h"
#endif
#ifdef GCC_ARMCM3_LM3S102
#include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
#endif
#ifdef GCC_ARMCM3
#include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
#endif
#ifdef IAR_ARM_CM3
#include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
#endif
#ifdef IAR_ARMCM3_LM
#include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
#endif
#ifdef HCS12_CODE_WARRIOR
#include "../../Source/portable/CodeWarrior/HCS12/portmacro.h"
#endif
#ifdef MICROBLAZE_GCC
#include "../../Source/portable/GCC/MicroBlaze/portmacro.h"
#endif
#ifdef TERN_EE
#include "..\..\Source\portable\Paradigm\Tern_EE\small\portmacro.h"
#endif
#ifdef GCC_HCS12
#include "../../Source/portable/GCC/HCS12/portmacro.h"
#endif
#ifdef GCC_MCF5235
#include "../../Source/portable/GCC/MCF5235/portmacro.h"
#endif
#ifdef COLDFIRE_V2_GCC
#include "../../../Source/portable/GCC/ColdFire_V2/portmacro.h"
#endif
#ifdef COLDFIRE_V2_CODEWARRIOR
#include "../../Source/portable/CodeWarrior/ColdFire_V2/portmacro.h"
#endif
#ifdef GCC_PPC405
#include "../../Source/portable/GCC/PPC405_Xilinx/portmacro.h"
#endif
#ifdef GCC_PPC440
#include "../../Source/portable/GCC/PPC440_Xilinx/portmacro.h"
#endif
#ifdef _16FX_SOFTUNE
#include "..\..\Source\portable\Softune\MB96340\portmacro.h"
#endif
#ifdef BCC_INDUSTRIAL_PC_PORT
/* A short file name has to be used in place of the normal
FreeRTOSConfig.h when using the Borland compiler. */
#include "frconfig.h"
#include "..\portable\BCC\16BitDOS\PC\prtmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef BCC_FLASH_LITE_186_PORT
/* A short file name has to be used in place of the normal
FreeRTOSConfig.h when using the Borland compiler. */
#include "frconfig.h"
#include "..\portable\BCC\16BitDOS\flsh186\prtmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef __GNUC__
#ifdef __AVR32_AVR32A__
#include "portmacro.h"
#endif
#endif
#ifdef __ICCAVR32__
#ifdef __CORE__
#if __CORE__ == __AVR32A__
#include "portmacro.h"
#endif
#endif
#endif
#ifdef __91467D
#include "portmacro.h"
#endif
#ifdef __96340
#include "portmacro.h"
#endif
#ifdef __IAR_V850ES_Fx3__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx3__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx3_L__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx2__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Hx2__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_78K0R_Kx3__
#include "../../Source/portable/IAR/78K0R/portmacro.h"
#endif
#ifdef __IAR_78K0R_Kx3L__
#include "../../Source/portable/IAR/78K0R/portmacro.h"
#endif
#endif /* DEPRECATED_DEFINITIONS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef EVENT_GROUPS_H
#define EVENT_GROUPS_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h" must appear in source files before "include event_groups.h"
#endif
/* FreeRTOS includes. */
#include "timers.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* An event group is a collection of bits to which an application can assign a
* meaning. For example, an application may create an event group to convey
* the status of various CAN bus related events in which bit 0 might mean "A CAN
* message has been received and is ready for processing", bit 1 might mean "The
* application has queued a message that is ready for sending onto the CAN
* network", and bit 2 might mean "It is time to send a SYNC message onto the
* CAN network" etc. A task can then test the bit values to see which events
* are active, and optionally enter the Blocked state to wait for a specified
* bit or a group of specified bits to be active. To continue the CAN bus
* example, a CAN controlling task can enter the Blocked state (and therefore
* not consume any processing time) until either bit 0, bit 1 or bit 2 are
* active, at which time the bit that was actually active would inform the task
* which action it had to take (process a received message, send a message, or
* send a SYNC).
*
* The event groups implementation contains intelligence to avoid race
* conditions that would otherwise occur were an application to use a simple
* variable for the same purpose. This is particularly important with respect
* to when a bit within an event group is to be cleared, and when bits have to
* be set and then tested atomically - as is the case where event groups are
* used to create a synchronisation point between multiple tasks (a
* 'rendezvous').
*
* \defgroup EventGroup
*/
/**
* event_groups.h
*
* Type by which event groups are referenced. For example, a call to
* xEventGroupCreate() returns an EventGroupHandle_t variable that can then
* be used as a parameter to other event group functions.
*
* \defgroup EventGroupHandle_t EventGroupHandle_t
* \ingroup EventGroup
*/
typedef void * EventGroupHandle_t;
/*
* The type that holds event bits always matches TickType_t - therefore the
* number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
* 32 bits if set to 0.
*
* \defgroup EventBits_t EventBits_t
* \ingroup EventGroup
*/
typedef TickType_t EventBits_t;
/**
* event_groups.h
*<pre>
EventGroupHandle_t xEventGroupCreate( void );
</pre>
*
* Create a new event group.
*
* Internally, within the FreeRTOS implementation, event groups use a [small]
* block of memory, in which the event group's structure is stored. If an event
* groups is created using xEventGropuCreate() then the required memory is
* automatically dynamically allocated inside the xEventGroupCreate() function.
* (see http://www.freertos.org/a00111.html). If an event group is created
* using xEventGropuCreateStatic() then the application writer must instead
* provide the memory that will get used by the event group.
* xEventGroupCreateStatic() therefore allows an event group to be created
* without using any dynamic memory allocation.
*
* Although event groups are not related to ticks, for internal implementation
* reasons the number of bits available for use in an event group is dependent
* on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
* configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
* 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
* 24 usable bits (bit 0 to bit 23). The EventBits_t type is used to store
* event bits within an event group.
*
* @return If the event group was created then a handle to the event group is
* returned. If there was insufficient FreeRTOS heap available to create the
* event group then NULL is returned. See http://www.freertos.org/a00111.html
*
* Example usage:
<pre>
// Declare a variable to hold the created event group.
EventGroupHandle_t xCreatedEventGroup;
// Attempt to create the event group.
xCreatedEventGroup = xEventGroupCreate();
// Was the event group created successfully?
if( xCreatedEventGroup == NULL )
{
// The event group was not created because there was insufficient
// FreeRTOS heap available.
}
else
{
// The event group was created.
}
</pre>
* \defgroup xEventGroupCreate xEventGroupCreate
* \ingroup EventGroup
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION EventGroupHandle_t xEventGroupCreate( void ) ;
#endif
/**
* event_groups.h
*<pre>
EventGroupHandle_t xEventGroupCreateStatic( EventGroupHandle_t * pxEventGroupBuffer );
</pre>
*
* Create a new event group.
*
* Internally, within the FreeRTOS implementation, event groups use a [small]
* block of memory, in which the event group's structure is stored. If an event
* groups is created using xEventGropuCreate() then the required memory is
* automatically dynamically allocated inside the xEventGroupCreate() function.
* (see http://www.freertos.org/a00111.html). If an event group is created
* using xEventGropuCreateStatic() then the application writer must instead
* provide the memory that will get used by the event group.
* xEventGroupCreateStatic() therefore allows an event group to be created
* without using any dynamic memory allocation.
*
* Although event groups are not related to ticks, for internal implementation
* reasons the number of bits available for use in an event group is dependent
* on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
* configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
* 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
* 24 usable bits (bit 0 to bit 23). The EventBits_t type is used to store
* event bits within an event group.
*
* @param pxEventGroupBuffer pxEventGroupBuffer must point to a variable of type
* StaticEventGroup_t, which will be then be used to hold the event group's data
* structures, removing the need for the memory to be allocated dynamically.
*
* @return If the event group was created then a handle to the event group is
* returned. If pxEventGroupBuffer was NULL then NULL is returned.
*
* Example usage:
<pre>
// StaticEventGroup_t is a publicly accessible structure that has the same
// size and alignment requirements as the real event group structure. It is
// provided as a mechanism for applications to know the size of the event
// group (which is dependent on the architecture and configuration file
// settings) without breaking the strict data hiding policy by exposing the
// real event group internals. This StaticEventGroup_t variable is passed
// into the xSemaphoreCreateEventGroupStatic() function and is used to store
// the event group's data structures
StaticEventGroup_t xEventGroupBuffer;
// Create the event group without dynamically allocating any memory.
xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
</pre>
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION EventGroupHandle_t xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer );
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit,
const BaseType_t xWaitForAllBits,
const TickType_t xTicksToWait );
</pre>
*
* [Potentially] block to wait for one or more bits to be set within a
* previously created event group.
*
* This function cannot be called from an interrupt.
*
* @param xEventGroup The event group in which the bits are being tested. The
* event group must have previously been created using a call to
* xEventGroupCreate().
*
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
* inside the event group. For example, to wait for bit 0 and/or bit 2 set
* uxBitsToWaitFor to 0x05. To wait for bits 0 and/or bit 1 and/or bit 2 set
* uxBitsToWaitFor to 0x07. Etc.
*
* @param xClearOnExit If xClearOnExit is set to pdTRUE then any bits within
* uxBitsToWaitFor that are set within the event group will be cleared before
* xEventGroupWaitBits() returns if the wait condition was met (if the function
* returns for a reason other than a timeout). If xClearOnExit is set to
* pdFALSE then the bits set in the event group are not altered when the call to
* xEventGroupWaitBits() returns.
*
* @param xWaitForAllBits If xWaitForAllBits is set to pdTRUE then
* xEventGroupWaitBits() will return when either all the bits in uxBitsToWaitFor
* are set or the specified block time expires. If xWaitForAllBits is set to
* pdFALSE then xEventGroupWaitBits() will return when any one of the bits set
* in uxBitsToWaitFor is set or the specified block time expires. The block
* time is specified by the xTicksToWait parameter.
*
* @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
* for one/all (depending on the xWaitForAllBits value) of the bits specified by
* uxBitsToWaitFor to become set.
*
* @return The value of the event group at the time either the bits being waited
* for became set, or the block time expired. Test the return value to know
* which bits were set. If xEventGroupWaitBits() returned because its timeout
* expired then not all the bits being waited for will be set. If
* xEventGroupWaitBits() returned because the bits it was waiting for were set
* then the returned value is the event group value before any bits were
* automatically cleared in the case that xClearOnExit parameter was set to
* pdTRUE.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
// Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
// the event group. Clear the bits before exiting.
uxBits = xEventGroupWaitBits(
xEventGroup, // The event group being tested.
BIT_0 | BIT_4, // The bits within the event group to wait for.
pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
pdFALSE, // Don't wait for both bits, either bit will do.
xTicksToWait ); // Wait a maximum of 100ms for either bit to be set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// xEventGroupWaitBits() returned because both bits were set.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_0 was set.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_4 was set.
}
else
{
// xEventGroupWaitBits() returned because xTicksToWait ticks passed
// without either BIT_0 or BIT_4 becoming set.
}
}
</pre>
* \defgroup xEventGroupWaitBits xEventGroupWaitBits
* \ingroup EventGroup
*/
PRIVILEGED_FUNCTION EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait );
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
</pre>
*
* Clear bits within an event group. This function cannot be called from an
* interrupt.
*
* @param xEventGroup The event group in which the bits are to be cleared.
*
* @param uxBitsToClear A bitwise value that indicates the bit or bits to clear
* in the event group. For example, to clear bit 3 only, set uxBitsToClear to
* 0x08. To clear bit 3 and bit 0 set uxBitsToClear to 0x09.
*
* @return The value of the event group before the specified bits were cleared.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Clear bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupClearBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being cleared.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 were set before xEventGroupClearBits() was
// called. Both will now be clear (not set).
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else
{
// Neither bit 0 nor bit 4 were set in the first place.
}
}
</pre>
* \defgroup xEventGroupClearBits xEventGroupClearBits
* \ingroup EventGroup
*/
PRIVILEGED_FUNCTION EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* A version of xEventGroupClearBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
* are an unknown number of tasks that may be waiting for the bit or bits being
* set. FreeRTOS does not allow nondeterministic operations to be performed
* while interrupts are disabled, so protects event groups that are accessed
* from tasks by suspending the scheduler rather than disabling interrupts. As
* a result event groups cannot be accessed directly from an interrupt service
* routine. Therefore xEventGroupClearBitsFromISR() sends a message to the
* timer task to have the clear operation performed in the context of the timer
* task.
*
* @param xEventGroup The event group in which the bits are to be cleared.
*
* @param uxBitsToClear A bitwise value that indicates the bit or bits to clear.
* For example, to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3
* and bit 0 set uxBitsToClear to 0x09.
*
* @return If the request to execute the function was posted successfully then
* pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
// Clear bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupClearBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 ); // The bits being set.
if( xResult == pdPASS )
{
// The message was posted successfully.
}
}
</pre>
* \defgroup xEventGroupClearBitsFromISR xEventGroupClearBitsFromISR
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
PRIVILEGED_FUNCTION BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
#else
#define xEventGroupClearBitsFromISR( xEventGroup, uxBitsToClear ) xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL )
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* Set bits within an event group.
* This function cannot be called from an interrupt. xEventGroupSetBitsFromISR()
* is a version that can be called from an interrupt.
*
* Setting bits in an event group will automatically unblock tasks that are
* blocked waiting for the bits.
*
* @param xEventGroup The event group in which the bits are to be set.
*
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
* and bit 0 set uxBitsToSet to 0x09.
*
* @return The value of the event group at the time the call to
* xEventGroupSetBits() returns. There are two reasons why the returned value
* might have the bits specified by the uxBitsToSet parameter cleared. First,
* if setting a bit results in a task that was waiting for the bit leaving the
* blocked state then it is possible the bit will be cleared automatically
* (see the xClearBitOnExit parameter of xEventGroupWaitBits()). Second, any
* unblocked (or otherwise Ready state) task that has a priority above that of
* the task that called xEventGroupSetBits() will execute and may change the
* event group value before the call to xEventGroupSetBits() returns.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Set bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupSetBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 remained set when the function returned.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 remained set when the function returned, but bit 4 was
// cleared. It might be that bit 4 was cleared automatically as a
// task that was waiting for bit 4 was removed from the Blocked
// state.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 remained set when the function returned, but bit 0 was
// cleared. It might be that bit 0 was cleared automatically as a
// task that was waiting for bit 0 was removed from the Blocked
// state.
}
else
{
// Neither bit 0 nor bit 4 remained set. It might be that a task
// was waiting for both of the bits to be set, and the bits were
// cleared as the task left the Blocked state.
}
}
</pre>
* \defgroup xEventGroupSetBits xEventGroupSetBits
* \ingroup EventGroup
*/
PRIVILEGED_FUNCTION EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
</pre>
*
* A version of xEventGroupSetBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
* are an unknown number of tasks that may be waiting for the bit or bits being
* set. FreeRTOS does not allow nondeterministic operations to be performed in
* interrupts or from critical sections. Therefore xEventGroupSetBitsFromISR()
* sends a message to the timer task to have the set operation performed in the
* context of the timer task - where a scheduler lock is used in place of a
* critical section.
*
* @param xEventGroup The event group in which the bits are to be set.
*
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
* and bit 0 set uxBitsToSet to 0x09.
*
* @param pxHigherPriorityTaskWoken As mentioned above, calling this function
* will result in a message being sent to the timer daemon task. If the
* priority of the timer daemon task is higher than the priority of the
* currently running task (the task the interrupt interrupted) then
* *pxHigherPriorityTaskWoken will be set to pdTRUE by
* xEventGroupSetBitsFromISR(), indicating that a context switch should be
* requested before the interrupt exits. For that reason
* *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
* example code below.
*
* @return If the request to execute the function was posted successfully then
* pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
BaseType_t xHigherPriorityTaskWoken, xResult;
// xHigherPriorityTaskWoken must be initialised to pdFALSE.
xHigherPriorityTaskWoken = pdFALSE;
// Set bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupSetBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 // The bits being set.
&xHigherPriorityTaskWoken );
// Was the message posted successfully?
if( xResult == pdPASS )
{
// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
// switch should be requested. The macro used is port specific and
// will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
// refer to the documentation page for the port being used.
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
}
</pre>
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
PRIVILEGED_FUNCTION BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
#else
#define xEventGroupSetBitsFromISR( xEventGroup, uxBitsToSet, pxHigherPriorityTaskWoken ) xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken )
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet,
const EventBits_t uxBitsToWaitFor,
TickType_t xTicksToWait );
</pre>
*
* Atomically set bits within an event group, then wait for a combination of
* bits to be set within the same event group. This functionality is typically
* used to synchronise multiple tasks, where each task has to wait for the other
* tasks to reach a synchronisation point before proceeding.
*
* This function cannot be used from an interrupt.
*
* The function will return before its block time expires if the bits specified
* by the uxBitsToWait parameter are set, or become set within that time. In
* this case all the bits specified by uxBitsToWait will be automatically
* cleared before the function returns.
*
* @param xEventGroup The event group in which the bits are being tested. The
* event group must have previously been created using a call to
* xEventGroupCreate().
*
* @param uxBitsToSet The bits to set in the event group before determining
* if, and possibly waiting for, all the bits specified by the uxBitsToWait
* parameter are set.
*
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
* inside the event group. For example, to wait for bit 0 and bit 2 set
* uxBitsToWaitFor to 0x05. To wait for bits 0 and bit 1 and bit 2 set
* uxBitsToWaitFor to 0x07. Etc.
*
* @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
* for all of the bits specified by uxBitsToWaitFor to become set.
*
* @return The value of the event group at the time either the bits being waited
* for became set, or the block time expired. Test the return value to know
* which bits were set. If xEventGroupSync() returned because its timeout
* expired then not all the bits being waited for will be set. If
* xEventGroupSync() returned because all the bits it was waiting for were
* set then the returned value is the event group value before any bits were
* automatically cleared.
*
* Example usage:
<pre>
// Bits used by the three tasks.
#define TASK_0_BIT ( 1 << 0 )
#define TASK_1_BIT ( 1 << 1 )
#define TASK_2_BIT ( 1 << 2 )
#define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
// Use an event group to synchronise three tasks. It is assumed this event
// group has already been created elsewhere.
EventGroupHandle_t xEventBits;
void vTask0( void *pvParameters )
{
EventBits_t uxReturn;
TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
for( ;; )
{
// Perform task functionality here.
// Set bit 0 in the event flag to note this task has reached the
// sync point. The other two tasks will set the other two bits defined
// by ALL_SYNC_BITS. All three tasks have reached the synchronisation
// point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
// for this to happen.
uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xTicksToWait );
if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
{
// All three tasks reached the synchronisation point before the call
// to xEventGroupSync() timed out.
}
}
}
void vTask1( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 1 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
void vTask2( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 2 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
</pre>
* \defgroup xEventGroupSync xEventGroupSync
* \ingroup EventGroup
*/
PRIVILEGED_FUNCTION EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait );
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup );
</pre>
*
* Returns the current value of the bits in an event group. This function
* cannot be used from an interrupt.
*
* @param xEventGroup The event group being queried.
*
* @return The event group bits at the time xEventGroupGetBits() was called.
*
* \defgroup xEventGroupGetBits xEventGroupGetBits
* \ingroup EventGroup
*/
#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
</pre>
*
* A version of xEventGroupGetBits() that can be called from an ISR.
*
* @param xEventGroup The event group being queried.
*
* @return The event group bits at the time xEventGroupGetBitsFromISR() was called.
*
* \defgroup xEventGroupGetBitsFromISR xEventGroupGetBitsFromISR
* \ingroup EventGroup
*/
PRIVILEGED_FUNCTION EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
/**
* event_groups.h
*<pre>
void xEventGroupDelete( EventGroupHandle_t xEventGroup );
</pre>
*
* Delete an event group that was previously created by a call to
* xEventGroupCreate(). Tasks that are blocked on the event group will be
* unblocked and obtain 0 as the event group's value.
*
* @param xEventGroup The event group being deleted.
*/
PRIVILEGED_FUNCTION void vEventGroupDelete( EventGroupHandle_t xEventGroup );
/* For internal use only. */
PRIVILEGED_FUNCTION void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet );
PRIVILEGED_FUNCTION void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear );
#if (configUSE_TRACE_FACILITY == 1)
PRIVILEGED_FUNCTION UBaseType_t uxEventGroupGetNumber( void* xEventGroup );
#endif
#ifdef __cplusplus
}
#endif
#endif /* EVENT_GROUPS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This is the list implementation used by the scheduler. While it is tailored
* heavily for the schedulers needs, it is also available for use by
* application code.
*
* list_ts can only store pointers to list_item_ts. Each ListItem_t contains a
* numeric value (xItemValue). Most of the time the lists are sorted in
* descending item value order.
*
* Lists are created already containing one list item. The value of this
* item is the maximum possible that can be stored, it is therefore always at
* the end of the list and acts as a marker. The list member pxHead always
* points to this marker - even though it is at the tail of the list. This
* is because the tail contains a wrap back pointer to the true head of
* the list.
*
* In addition to it's value, each list item contains a pointer to the next
* item in the list (pxNext), a pointer to the list it is in (pxContainer)
* and a pointer to back to the object that contains it. These later two
* pointers are included for efficiency of list manipulation. There is
* effectively a two way link between the object containing the list item and
* the list item itself.
*
*
* \page ListIntroduction List Implementation
* \ingroup FreeRTOSIntro
*/
#ifndef INC_FREERTOS_H
#error FreeRTOS.h must be included before list.h
#endif
#ifndef LIST_H
#define LIST_H
/*
* The list structure members are modified from within interrupts, and therefore
* by rights should be declared volatile. However, they are only modified in a
* functionally atomic way (within critical sections of with the scheduler
* suspended) and are either passed by reference into a function or indexed via
* a volatile variable. Therefore, in all use cases tested so far, the volatile
* qualifier can be omitted in order to provide a moderate performance
* improvement without adversely affecting functional behaviour. The assembly
* instructions generated by the IAR, ARM and GCC compilers when the respective
* compiler's options were set for maximum optimisation has been inspected and
* deemed to be as intended. That said, as compiler technology advances, and
* especially if aggressive cross module optimisation is used (a use case that
* has not been exercised to any great extend) then it is feasible that the
* volatile qualifier will be needed for correct optimisation. It is expected
* that a compiler removing essential code because, without the volatile
* qualifier on the list structure members and with aggressive cross module
* optimisation, the compiler deemed the code unnecessary will result in
* complete and obvious failure of the scheduler. If this is ever experienced
* then the volatile qualifier can be inserted in the relevant places within the
* list structures by simply defining configLIST_VOLATILE to volatile in
* FreeRTOSConfig.h (as per the example at the bottom of this comment block).
* If configLIST_VOLATILE is not defined then the preprocessor directives below
* will simply #define configLIST_VOLATILE away completely.
*
* To use volatile list structure members then add the following line to
* FreeRTOSConfig.h (without the quotes):
* "#define configLIST_VOLATILE volatile"
*/
#ifndef configLIST_VOLATILE
#define configLIST_VOLATILE
#endif /* configSUPPORT_CROSS_MODULE_OPTIMISATION */
#ifdef __cplusplus
extern "C" {
#endif
/* Macros that can be used to place known values within the list structures,
then check that the known values do not get corrupted during the execution of
the application. These may catch the list data structures being overwritten in
memory. They will not catch data errors caused by incorrect configuration or
use of FreeRTOS.*/
#if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 0 )
/* Define the macros to do nothing. */
#define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE
#define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE
#define listFIRST_LIST_INTEGRITY_CHECK_VALUE
#define listSECOND_LIST_INTEGRITY_CHECK_VALUE
#define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
#define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem )
#define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList )
#define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList )
#define listTEST_LIST_ITEM_INTEGRITY( pxItem )
#define listTEST_LIST_INTEGRITY( pxList )
#else
/* Define macros that add new members into the list structures. */
#define listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue1;
#define listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE TickType_t xListItemIntegrityValue2;
#define listFIRST_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue1;
#define listSECOND_LIST_INTEGRITY_CHECK_VALUE TickType_t xListIntegrityValue2;
/* Define macros that set the new structure members to known values. */
#define listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
#define listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem ) ( pxItem )->xListItemIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
#define listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList ) ( pxList )->xListIntegrityValue1 = pdINTEGRITY_CHECK_VALUE
#define listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList ) ( pxList )->xListIntegrityValue2 = pdINTEGRITY_CHECK_VALUE
/* Define macros that will assert if one of the structure members does not
contain its expected value. */
#define listTEST_LIST_ITEM_INTEGRITY( pxItem ) configASSERT( ( ( pxItem )->xListItemIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxItem )->xListItemIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
#define listTEST_LIST_INTEGRITY( pxList ) configASSERT( ( ( pxList )->xListIntegrityValue1 == pdINTEGRITY_CHECK_VALUE ) && ( ( pxList )->xListIntegrityValue2 == pdINTEGRITY_CHECK_VALUE ) )
#endif /* configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES */
/*
* Definition of the only type of object that a list can contain.
*/
struct xLIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
configLIST_VOLATILE TickType_t xItemValue; /*< The value being listed. In most cases this is used to sort the list in descending order. */
struct xLIST_ITEM * configLIST_VOLATILE pxNext; /*< Pointer to the next ListItem_t in the list. */
struct xLIST_ITEM * configLIST_VOLATILE pxPrevious; /*< Pointer to the previous ListItem_t in the list. */
void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
void * configLIST_VOLATILE pvContainer; /*< Pointer to the list in which this list item is placed (if any). */
listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
};
typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
struct xMINI_LIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
configLIST_VOLATILE TickType_t xItemValue;
struct xLIST_ITEM * configLIST_VOLATILE pxNext;
struct xLIST_ITEM * configLIST_VOLATILE pxPrevious;
};
typedef struct xMINI_LIST_ITEM MiniListItem_t;
/*
* Definition of the type of queue used by the scheduler.
*/
typedef struct xLIST
{
listFIRST_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
configLIST_VOLATILE UBaseType_t uxNumberOfItems;
ListItem_t * configLIST_VOLATILE pxIndex; /*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
MiniListItem_t xListEnd; /*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
listSECOND_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
} List_t;
/*
* Access macro to set the owner of a list item. The owner of a list item
* is the object (usually a TCB) that contains the list item.
*
* \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
* \ingroup LinkedList
*/
#define listSET_LIST_ITEM_OWNER( pxListItem, pxOwner ) ( ( pxListItem )->pvOwner = ( void * ) ( pxOwner ) )
/*
* Access macro to get the owner of a list item. The owner of a list item
* is the object (usually a TCB) that contains the list item.
*
* \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
* \ingroup LinkedList
*/
#define listGET_LIST_ITEM_OWNER( pxListItem ) ( ( pxListItem )->pvOwner )
/*
* Access macro to set the value of the list item. In most cases the value is
* used to sort the list in descending order.
*
* \page listSET_LIST_ITEM_VALUE listSET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listSET_LIST_ITEM_VALUE( pxListItem, xValue ) ( ( pxListItem )->xItemValue = ( xValue ) )
/*
* Access macro to retrieve the value of the list item. The value can
* represent anything - for example the priority of a task, or the time at
* which a task should be unblocked.
*
* \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listGET_LIST_ITEM_VALUE( pxListItem ) ( ( pxListItem )->xItemValue )
/*
* Access macro to retrieve the value of the list item at the head of a given
* list.
*
* \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext->xItemValue )
/*
* Return the list item at the head of the list.
*
* \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
* \ingroup LinkedList
*/
#define listGET_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext )
/*
* Return the list item at the head of the list.
*
* \page listGET_NEXT listGET_NEXT
* \ingroup LinkedList
*/
#define listGET_NEXT( pxListItem ) ( ( pxListItem )->pxNext )
/*
* Return the list item that marks the end of the list
*
* \page listGET_END_MARKER listGET_END_MARKER
* \ingroup LinkedList
*/
#define listGET_END_MARKER( pxList ) ( ( ListItem_t const * ) ( &( ( pxList )->xListEnd ) ) )
/*
* Access macro to determine if a list contains any items. The macro will
* only have the value true if the list is empty.
*
* \page listLIST_IS_EMPTY listLIST_IS_EMPTY
* \ingroup LinkedList
*/
#define listLIST_IS_EMPTY( pxList ) ( ( BaseType_t ) ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) )
/*
* Access macro to return the number of items in the list.
*/
#define listCURRENT_LIST_LENGTH( pxList ) ( ( pxList )->uxNumberOfItems )
/*
* Access function to obtain the owner of the next entry in a list.
*
* The list member pxIndex is used to walk through a list. Calling
* listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list
* and returns that entry's pxOwner parameter. Using multiple calls to this
* function it is therefore possible to move through every item contained in
* a list.
*
* The pxOwner parameter of a list item is a pointer to the object that owns
* the list item. In the scheduler this is normally a task control block.
* The pxOwner parameter effectively creates a two way link between the list
* item and its owner.
*
* @param pxTCB pxTCB is set to the address of the owner of the next list item.
* @param pxList The list from which the next item owner is to be returned.
*
* \page listGET_OWNER_OF_NEXT_ENTRY listGET_OWNER_OF_NEXT_ENTRY
* \ingroup LinkedList
*/
#define listGET_OWNER_OF_NEXT_ENTRY( pxTCB, pxList ) \
{ \
List_t * const pxConstList = ( pxList ); \
/* Increment the index to the next item and return the item, ensuring */ \
/* we don't return the marker used at the end of the list. */ \
( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
if( ( void * ) ( pxConstList )->pxIndex == ( void * ) &( ( pxConstList )->xListEnd ) ) \
{ \
( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
} \
( pxTCB ) = ( pxConstList )->pxIndex->pvOwner; \
}
/*
* Access function to obtain the owner of the first entry in a list. Lists
* are normally sorted in ascending item value order.
*
* This function returns the pxOwner member of the first item in the list.
* The pxOwner parameter of a list item is a pointer to the object that owns
* the list item. In the scheduler this is normally a task control block.
* The pxOwner parameter effectively creates a two way link between the list
* item and its owner.
*
* @param pxList The list from which the owner of the head item is to be
* returned.
*
* \page listGET_OWNER_OF_HEAD_ENTRY listGET_OWNER_OF_HEAD_ENTRY
* \ingroup LinkedList
*/
#define listGET_OWNER_OF_HEAD_ENTRY( pxList ) ( (&( ( pxList )->xListEnd ))->pxNext->pvOwner )
/*
* Check to see if a list item is within a list. The list item maintains a
* "container" pointer that points to the list it is in. All this macro does
* is check to see if the container and the list match.
*
* @param pxList The list we want to know if the list item is within.
* @param pxListItem The list item we want to know if is in the list.
* @return pdTRUE if the list item is in the list, otherwise pdFALSE.
*/
#define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( BaseType_t ) ( ( pxListItem )->pvContainer == ( void * ) ( pxList ) ) )
/*
* Return the list a list item is contained within (referenced from).
*
* @param pxListItem The list item being queried.
* @return A pointer to the List_t object that references the pxListItem
*/
#define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pvContainer )
/*
* This provides a crude means of knowing if a list has been initialised, as
* pxList->xListEnd.xItemValue is set to portMAX_DELAY by the vListInitialise()
* function.
*/
#define listLIST_IS_INITIALISED( pxList ) ( ( pxList )->xListEnd.xItemValue == portMAX_DELAY )
/*
* Must be called before a list is used! This initialises all the members
* of the list structure and inserts the xListEnd item into the list as a
* marker to the back of the list.
*
* @param pxList Pointer to the list being initialised.
*
* \page vListInitialise vListInitialise
* \ingroup LinkedList
*/
PRIVILEGED_FUNCTION void vListInitialise( List_t * const pxList );
/*
* Must be called before a list item is used. This sets the list container to
* null so the item does not think that it is already contained in a list.
*
* @param pxItem Pointer to the list item being initialised.
*
* \page vListInitialiseItem vListInitialiseItem
* \ingroup LinkedList
*/
PRIVILEGED_FUNCTION void vListInitialiseItem( ListItem_t * const pxItem );
/*
* Insert a list item into a list. The item will be inserted into the list in
* a position determined by its item value (descending item value order).
*
* @param pxList The list into which the item is to be inserted.
*
* @param pxNewListItem The item that is to be placed in the list.
*
* \page vListInsert vListInsert
* \ingroup LinkedList
*/
PRIVILEGED_FUNCTION void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem );
/*
* Insert a list item into a list. The item will be inserted in a position
* such that it will be the last item within the list returned by multiple
* calls to listGET_OWNER_OF_NEXT_ENTRY.
*
* The list member pxIndex is used to walk through a list. Calling
* listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list.
* Placing an item in a list using vListInsertEnd effectively places the item
* in the list position pointed to by pxIndex. This means that every other
* item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
* the pxIndex parameter again points to the item being inserted.
*
* @param pxList The list into which the item is to be inserted.
*
* @param pxNewListItem The list item to be inserted into the list.
*
* \page vListInsertEnd vListInsertEnd
* \ingroup LinkedList
*/
PRIVILEGED_FUNCTION void vListInsertEnd( List_t * const pxList, ListItem_t * const pxNewListItem );
/*
* Remove an item from a list. The list item has a pointer to the list that
* it is in, so only the list item need be passed into the function.
*
* @param uxListRemove The item to be removed. The item will remove itself from
* the list pointed to by it's pxContainer parameter.
*
* @return The number of items that remain in the list after the list item has
* been removed.
*
* \page uxListRemove uxListRemove
* \ingroup LinkedList
*/
PRIVILEGED_FUNCTION UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove );
#ifdef __cplusplus
}
#endif
#endif
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* When the MPU is used the standard (non MPU) API functions are mapped to
* equivalents that start "MPU_", the prototypes for which are defined in this
* header files. This will cause the application code to call the MPU_ version
* which wraps the non-MPU version with privilege promoting then demoting code,
* so the kernel code always runs will full privileges.
*/
#ifndef MPU_PROTOTYPES_H
#define MPU_PROTOTYPES_H
/* MPU versions of tasks.h API function. */
BaseType_t MPU_xTaskCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask );
TaskHandle_t MPU_xTaskCreateStatic( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer );
BaseType_t MPU_xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask );
void MPU_vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );
void MPU_vTaskDelete( TaskHandle_t xTaskToDelete );
void MPU_vTaskDelay( const TickType_t xTicksToDelay );
void MPU_vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement );
BaseType_t MPU_xTaskAbortDelay( TaskHandle_t xTask );
UBaseType_t MPU_uxTaskPriorityGet( TaskHandle_t xTask );
eTaskState MPU_eTaskGetState( TaskHandle_t xTask );
void MPU_vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState );
void MPU_vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );
void MPU_vTaskSuspend( TaskHandle_t xTaskToSuspend );
void MPU_vTaskResume( TaskHandle_t xTaskToResume );
void MPU_vTaskStartScheduler( void );
void MPU_vTaskSuspendAll( void );
BaseType_t MPU_xTaskResumeAll( void );
TickType_t MPU_xTaskGetTickCount( void );
UBaseType_t MPU_uxTaskGetNumberOfTasks( void );
char * MPU_pcTaskGetName( TaskHandle_t xTaskToQuery );
TaskHandle_t MPU_xTaskGetHandle( const char *pcNameToQuery );
UBaseType_t MPU_uxTaskGetStackHighWaterMark( TaskHandle_t xTask );
void MPU_vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction );
TaskHookFunction_t MPU_xTaskGetApplicationTaskTag( TaskHandle_t xTask );
void MPU_vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue );
void * MPU_pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex );
BaseType_t MPU_xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter );
TaskHandle_t MPU_xTaskGetIdleTaskHandle( void );
UBaseType_t MPU_uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime );
void MPU_vTaskList( char * pcWriteBuffer );
void MPU_vTaskGetRunTimeStats( char *pcWriteBuffer );
BaseType_t MPU_xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue );
BaseType_t MPU_xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );
uint32_t MPU_ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );
BaseType_t MPU_xTaskNotifyStateClear( TaskHandle_t xTask );
BaseType_t MPU_xTaskIncrementTick( void );
TaskHandle_t MPU_xTaskGetCurrentTaskHandle( void );
void MPU_vTaskSetTimeOutState( TimeOut_t * const pxTimeOut );
BaseType_t MPU_xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait );
void MPU_vTaskMissedYield( void );
BaseType_t MPU_xTaskGetSchedulerState( void );
/* MPU versions of queue.h API function. */
BaseType_t MPU_xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition );
BaseType_t MPU_xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek );
UBaseType_t MPU_uxQueueMessagesWaiting( const QueueHandle_t xQueue );
UBaseType_t MPU_uxQueueSpacesAvailable( const QueueHandle_t xQueue );
void MPU_vQueueDelete( QueueHandle_t xQueue );
QueueHandle_t MPU_xQueueCreateMutex( const uint8_t ucQueueType );
QueueHandle_t MPU_xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue );
QueueHandle_t MPU_xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount );
QueueHandle_t MPU_xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue );
void* MPU_xQueueGetMutexHolder( QueueHandle_t xSemaphore );
BaseType_t MPU_xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait );
BaseType_t MPU_xQueueGiveMutexRecursive( QueueHandle_t pxMutex );
void MPU_vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName );
void MPU_vQueueUnregisterQueue( QueueHandle_t xQueue );
const char * MPU_pcQueueGetName( QueueHandle_t xQueue );
QueueHandle_t MPU_xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType );
QueueHandle_t MPU_xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType );
QueueSetHandle_t MPU_xQueueCreateSet( const UBaseType_t uxEventQueueLength );
BaseType_t MPU_xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet );
BaseType_t MPU_xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet );
QueueSetMemberHandle_t MPU_xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait );
BaseType_t MPU_xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue );
void MPU_vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber );
UBaseType_t MPU_uxQueueGetQueueNumber( QueueHandle_t xQueue );
uint8_t MPU_ucQueueGetQueueType( QueueHandle_t xQueue );
/* MPU versions of timers.h API function. */
TimerHandle_t MPU_xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction );
TimerHandle_t MPU_xTimerCreateStatic( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction, StaticTimer_t *pxTimerBuffer );
void * MPU_pvTimerGetTimerID( const TimerHandle_t xTimer );
void MPU_vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
BaseType_t MPU_xTimerIsTimerActive( TimerHandle_t xTimer );
TaskHandle_t MPU_xTimerGetTimerDaemonTaskHandle( void );
BaseType_t MPU_xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait );
const char * MPU_pcTimerGetName( TimerHandle_t xTimer );
TickType_t MPU_xTimerGetPeriod( TimerHandle_t xTimer );
TickType_t MPU_xTimerGetExpiryTime( TimerHandle_t xTimer );
BaseType_t MPU_xTimerCreateTimerTask( void );
BaseType_t MPU_xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait );
/* MPU versions of event_group.h API function. */
EventGroupHandle_t MPU_xEventGroupCreate( void );
EventGroupHandle_t MPU_xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer );
EventBits_t MPU_xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait );
EventBits_t MPU_xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
EventBits_t MPU_xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
EventBits_t MPU_xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait );
void MPU_vEventGroupDelete( EventGroupHandle_t xEventGroup );
UBaseType_t MPU_uxEventGroupGetNumber( void* xEventGroup );
#endif /* MPU_PROTOTYPES_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef MPU_WRAPPERS_H
#define MPU_WRAPPERS_H
/* This file redefines API functions to be called through a wrapper macro, but
only for ports that are using the MPU. */
#ifdef portUSING_MPU_WRAPPERS
/* MPU_WRAPPERS_INCLUDED_FROM_API_FILE will be defined when this file is
included from queue.c or task.c to prevent it from having an effect within
those files. */
#ifndef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/*
* Map standard (non MPU) API functions to equivalents that start
* "MPU_". This will cause the application code to call the MPU_
* version, which wraps the non-MPU version with privilege promoting
* then demoting code, so the kernel code always runs will full
* privileges.
*/
/* Map standard tasks.h API functions to the MPU equivalents. */
#define xTaskCreate MPU_xTaskCreate
#define xTaskCreateStatic MPU_xTaskCreateStatic
#define xTaskCreateRestricted MPU_xTaskCreateRestricted
#define vTaskAllocateMPURegions MPU_vTaskAllocateMPURegions
#define vTaskDelete MPU_vTaskDelete
#define vTaskDelay MPU_vTaskDelay
#define vTaskDelayUntil MPU_vTaskDelayUntil
#define xTaskAbortDelay MPU_xTaskAbortDelay
#define uxTaskPriorityGet MPU_uxTaskPriorityGet
#define eTaskGetState MPU_eTaskGetState
#define vTaskGetInfo MPU_vTaskGetInfo
#define vTaskPrioritySet MPU_vTaskPrioritySet
#define vTaskSuspend MPU_vTaskSuspend
#define vTaskResume MPU_vTaskResume
#define vTaskSuspendAll MPU_vTaskSuspendAll
#define xTaskResumeAll MPU_xTaskResumeAll
#define xTaskGetTickCount MPU_xTaskGetTickCount
#define uxTaskGetNumberOfTasks MPU_uxTaskGetNumberOfTasks
#define pcTaskGetName MPU_pcTaskGetName
#define xTaskGetHandle MPU_xTaskGetHandle
#define uxTaskGetStackHighWaterMark MPU_uxTaskGetStackHighWaterMark
#define vTaskSetApplicationTaskTag MPU_vTaskSetApplicationTaskTag
#define xTaskGetApplicationTaskTag MPU_xTaskGetApplicationTaskTag
#define vTaskSetThreadLocalStoragePointer MPU_vTaskSetThreadLocalStoragePointer
#define pvTaskGetThreadLocalStoragePointer MPU_pvTaskGetThreadLocalStoragePointer
#define xTaskCallApplicationTaskHook MPU_xTaskCallApplicationTaskHook
#define xTaskGetIdleTaskHandle MPU_xTaskGetIdleTaskHandle
#define uxTaskGetSystemState MPU_uxTaskGetSystemState
#define vTaskList MPU_vTaskList
#define vTaskGetRunTimeStats MPU_vTaskGetRunTimeStats
#define xTaskGenericNotify MPU_xTaskGenericNotify
#define xTaskNotifyWait MPU_xTaskNotifyWait
#define ulTaskNotifyTake MPU_ulTaskNotifyTake
#define xTaskNotifyStateClear MPU_xTaskNotifyStateClear
#define xTaskGetCurrentTaskHandle MPU_xTaskGetCurrentTaskHandle
#define vTaskSetTimeOutState MPU_vTaskSetTimeOutState
#define xTaskCheckForTimeOut MPU_xTaskCheckForTimeOut
#define xTaskGetSchedulerState MPU_xTaskGetSchedulerState
/* Map standard queue.h API functions to the MPU equivalents. */
#define xQueueGenericSend MPU_xQueueGenericSend
#define xQueueGenericReceive MPU_xQueueGenericReceive
#define uxQueueMessagesWaiting MPU_uxQueueMessagesWaiting
#define uxQueueSpacesAvailable MPU_uxQueueSpacesAvailable
#define vQueueDelete MPU_vQueueDelete
#define xQueueCreateMutex MPU_xQueueCreateMutex
#define xQueueCreateMutexStatic MPU_xQueueCreateMutexStatic
#define xQueueCreateCountingSemaphore MPU_xQueueCreateCountingSemaphore
#define xQueueCreateCountingSemaphoreStatic MPU_xQueueCreateCountingSemaphoreStatic
#define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
#define xQueueTakeMutexRecursive MPU_xQueueTakeMutexRecursive
#define xQueueGiveMutexRecursive MPU_xQueueGiveMutexRecursive
#define xQueueGenericCreate MPU_xQueueGenericCreate
#define xQueueGenericCreateStatic MPU_xQueueGenericCreateStatic
#define xQueueCreateSet MPU_xQueueCreateSet
#define xQueueAddToSet MPU_xQueueAddToSet
#define xQueueRemoveFromSet MPU_xQueueRemoveFromSet
#define xQueueSelectFromSet MPU_xQueueSelectFromSet
#define xQueueGenericReset MPU_xQueueGenericReset
#if( configQUEUE_REGISTRY_SIZE > 0 )
#define vQueueAddToRegistry MPU_vQueueAddToRegistry
#define vQueueUnregisterQueue MPU_vQueueUnregisterQueue
#define pcQueueGetName MPU_pcQueueGetName
#endif
/* Map standard timer.h API functions to the MPU equivalents. */
#define xTimerCreate MPU_xTimerCreate
#define xTimerCreateStatic MPU_xTimerCreateStatic
#define pvTimerGetTimerID MPU_pvTimerGetTimerID
#define vTimerSetTimerID MPU_vTimerSetTimerID
#define xTimerIsTimerActive MPU_xTimerIsTimerActive
#define xTimerGetTimerDaemonTaskHandle MPU_xTimerGetTimerDaemonTaskHandle
#define xTimerPendFunctionCall MPU_xTimerPendFunctionCall
#define pcTimerGetName MPU_pcTimerGetName
#define xTimerGetPeriod MPU_xTimerGetPeriod
#define xTimerGetExpiryTime MPU_xTimerGetExpiryTime
#define xTimerGenericCommand MPU_xTimerGenericCommand
/* Map standard event_group.h API functions to the MPU equivalents. */
#define xEventGroupCreate MPU_xEventGroupCreate
#define xEventGroupCreateStatic MPU_xEventGroupCreateStatic
#define xEventGroupWaitBits MPU_xEventGroupWaitBits
#define xEventGroupClearBits MPU_xEventGroupClearBits
#define xEventGroupSetBits MPU_xEventGroupSetBits
#define xEventGroupSync MPU_xEventGroupSync
#define vEventGroupDelete MPU_vEventGroupDelete
/* Remove the privileged function macro. */
#define PRIVILEGED_FUNCTION
#else /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
/* Ensure API functions go in the privileged execution section. */
#if defined(__ICCARM__)
#define PRIVILEGED_FUNCTION _Pragma("location= \"privileged_functions\"")
#define PRIVILEGED_DATA _Pragma("location= \"privileged_data\"")
#define PRIVILEGED_INITIALIZED_DATA _Pragma("location= \"privileged_initialized_data\"")
#else
#define PRIVILEGED_FUNCTION __attribute__((section("privileged_functions")))
#define PRIVILEGED_DATA __attribute__((section("privileged_data")))
#define PRIVILEGED_INITIALIZED_DATA PRIVILEGED_DATA
#endif
#endif /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
#else /* portUSING_MPU_WRAPPERS */
#define PRIVILEGED_FUNCTION
#define PRIVILEGED_DATA
#define PRIVILEGED_INITIALIZED_DATA
#define portUSING_MPU_WRAPPERS 0
#endif /* portUSING_MPU_WRAPPERS */
#endif /* MPU_WRAPPERS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Portable layer API. Each function must be defined for each port.
*----------------------------------------------------------*/
#ifndef PORTABLE_H
#define PORTABLE_H
/* Each FreeRTOS port has a unique portmacro.h header file. Originally a
pre-processor definition was used to ensure the pre-processor found the correct
portmacro.h file for the port being used. That scheme was deprecated in favour
of setting the compiler's include path such that it found the correct
portmacro.h file - removing the need for the constant and allowing the
portmacro.h file to be located anywhere in relation to the port being used.
Purely for reasons of backward compatibility the old method is still valid, but
to make it clear that new projects should not use it, support for the port
specific constants has been moved into the deprecated_definitions.h header
file. */
#include "deprecated_definitions.h"
/* If portENTER_CRITICAL is not defined then including deprecated_definitions.h
did not result in a portmacro.h header file being included - and it should be
included here. In this case the path to the correct portmacro.h header file
must be set in the compiler's include path. */
#ifndef portENTER_CRITICAL
#include "portmacro.h"
#endif
#if portBYTE_ALIGNMENT == 32
#define portBYTE_ALIGNMENT_MASK ( 0x001f )
#endif
#if portBYTE_ALIGNMENT == 16
#define portBYTE_ALIGNMENT_MASK ( 0x000f )
#endif
#if portBYTE_ALIGNMENT == 8
#define portBYTE_ALIGNMENT_MASK ( 0x0007 )
#endif
#if portBYTE_ALIGNMENT == 4
#define portBYTE_ALIGNMENT_MASK ( 0x0003 )
#endif
#if portBYTE_ALIGNMENT == 2
#define portBYTE_ALIGNMENT_MASK ( 0x0001 )
#endif
#if portBYTE_ALIGNMENT == 1
#define portBYTE_ALIGNMENT_MASK ( 0x0000 )
#endif
#ifndef portBYTE_ALIGNMENT_MASK
#error "Invalid portBYTE_ALIGNMENT definition"
#endif
#ifndef portNUM_CONFIGURABLE_REGIONS
#define portNUM_CONFIGURABLE_REGIONS 1
#endif
#ifdef __cplusplus
extern "C" {
#endif
#include "mpu_wrappers.h"
/*
* Setup the stack of a new task so it is ready to be placed under the
* scheduler control. The registers have to be placed on the stack in
* the order that the port expects to find them.
*
*/
#if( portUSING_MPU_WRAPPERS == 1 )
PRIVILEGED_FUNCTION StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) ;
#else
PRIVILEGED_FUNCTION StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) ;
#endif
/* Used by heap_5.c. */
typedef struct HeapRegion
{
uint8_t *pucStartAddress;
size_t xSizeInBytes;
} HeapRegion_t;
/*
* Used to define multiple heap regions for use by heap_5.c. This function
* must be called before any calls to pvPortMalloc() - not creating a task,
* queue, semaphore, mutex, software timer, event group, etc. will result in
* pvPortMalloc being called.
*
* pxHeapRegions passes in an array of HeapRegion_t structures - each of which
* defines a region of memory that can be used as the heap. The array is
* terminated by a HeapRegions_t structure that has a size of 0. The region
* with the lowest start address must appear first in the array.
*/
PRIVILEGED_FUNCTION void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions );
/*
* Map to the memory management routines required for the port.
*/
PRIVILEGED_FUNCTION void *pvPortMalloc( size_t xSize );
PRIVILEGED_FUNCTION void vPortFree( void *pv );
PRIVILEGED_FUNCTION void vPortInitialiseBlocks( void );
PRIVILEGED_FUNCTION size_t xPortGetFreeHeapSize( void );
PRIVILEGED_FUNCTION size_t xPortGetMinimumEverFreeHeapSize( void );
/*
* Setup the hardware ready for the scheduler to take control. This generally
* sets up a tick interrupt and sets timers for the correct tick frequency.
*/
PRIVILEGED_FUNCTION BaseType_t xPortStartScheduler( void );
/*
* Undo any hardware/ISR setup that was performed by xPortStartScheduler() so
* the hardware is left in its original condition after the scheduler stops
* executing.
*/
PRIVILEGED_FUNCTION void vPortEndScheduler( void );
/*
* The structures and methods of manipulating the MPU are contained within the
* port layer.
*
* Fills the xMPUSettings structure with the memory region information
* contained in xRegions.
*/
#if( portUSING_MPU_WRAPPERS == 1 )
struct xMEMORY_REGION;
PRIVILEGED_FUNCTION void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint32_t ulStackDepth );
#endif
#ifdef __cplusplus
}
#endif
#endif /* PORTABLE_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PROJDEFS_H
#define PROJDEFS_H
/*
* Defines the prototype to which task functions must conform. Defined in this
* file to ensure the type is known before portable.h is included.
*/
typedef void (*TaskFunction_t)( void * );
/* Converts a time in milliseconds to a time in ticks. This macro can be
overridden by a macro of the same name defined in FreeRTOSConfig.h in case the
definition here is not suitable for your application. */
#ifndef pdMS_TO_TICKS
#define pdMS_TO_TICKS( xTimeInMs ) ( ( TickType_t ) ( ( ( TickType_t ) ( xTimeInMs ) * ( TickType_t ) configTICK_RATE_HZ ) / ( TickType_t ) 1000 ) )
#endif
#define pdFALSE ( ( BaseType_t ) 0 )
#define pdTRUE ( ( BaseType_t ) 1 )
#define pdPASS ( pdTRUE )
#define pdFAIL ( pdFALSE )
#define errQUEUE_EMPTY ( ( BaseType_t ) 0 )
#define errQUEUE_FULL ( ( BaseType_t ) 0 )
/* FreeRTOS error definitions. */
#define errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ( -1 )
#define errQUEUE_BLOCKED ( -4 )
#define errQUEUE_YIELD ( -5 )
/* Macros used for basic data corruption checks. */
#ifndef configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES
#define configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES 0
#endif
#if( configUSE_16_BIT_TICKS == 1 )
#define pdINTEGRITY_CHECK_VALUE 0x5a5a
#else
#define pdINTEGRITY_CHECK_VALUE 0x5a5a5a5aUL
#endif
/* The following errno values are used by FreeRTOS+ components, not FreeRTOS
itself. */
#define pdFREERTOS_ERRNO_NONE 0 /* No errors */
#define pdFREERTOS_ERRNO_ENOENT 2 /* No such file or directory */
#define pdFREERTOS_ERRNO_EINTR 4 /* Interrupted system call */
#define pdFREERTOS_ERRNO_EIO 5 /* I/O error */
#define pdFREERTOS_ERRNO_ENXIO 6 /* No such device or address */
#define pdFREERTOS_ERRNO_EBADF 9 /* Bad file number */
#define pdFREERTOS_ERRNO_EAGAIN 11 /* No more processes */
#define pdFREERTOS_ERRNO_EWOULDBLOCK 11 /* Operation would block */
#define pdFREERTOS_ERRNO_ENOMEM 12 /* Not enough memory */
#define pdFREERTOS_ERRNO_EACCES 13 /* Permission denied */
#define pdFREERTOS_ERRNO_EFAULT 14 /* Bad address */
#define pdFREERTOS_ERRNO_EBUSY 16 /* Mount device busy */
#define pdFREERTOS_ERRNO_EEXIST 17 /* File exists */
#define pdFREERTOS_ERRNO_EXDEV 18 /* Cross-device link */
#define pdFREERTOS_ERRNO_ENODEV 19 /* No such device */
#define pdFREERTOS_ERRNO_ENOTDIR 20 /* Not a directory */
#define pdFREERTOS_ERRNO_EISDIR 21 /* Is a directory */
#define pdFREERTOS_ERRNO_EINVAL 22 /* Invalid argument */
#define pdFREERTOS_ERRNO_ENOSPC 28 /* No space left on device */
#define pdFREERTOS_ERRNO_ESPIPE 29 /* Illegal seek */
#define pdFREERTOS_ERRNO_EROFS 30 /* Read only file system */
#define pdFREERTOS_ERRNO_EUNATCH 42 /* Protocol driver not attached */
#define pdFREERTOS_ERRNO_EBADE 50 /* Invalid exchange */
#define pdFREERTOS_ERRNO_EFTYPE 79 /* Inappropriate file type or format */
#define pdFREERTOS_ERRNO_ENMFILE 89 /* No more files */
#define pdFREERTOS_ERRNO_ENOTEMPTY 90 /* Directory not empty */
#define pdFREERTOS_ERRNO_ENAMETOOLONG 91 /* File or path name too long */
#define pdFREERTOS_ERRNO_EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
#define pdFREERTOS_ERRNO_ENOBUFS 105 /* No buffer space available */
#define pdFREERTOS_ERRNO_ENOPROTOOPT 109 /* Protocol not available */
#define pdFREERTOS_ERRNO_EADDRINUSE 112 /* Address already in use */
#define pdFREERTOS_ERRNO_ETIMEDOUT 116 /* Connection timed out */
#define pdFREERTOS_ERRNO_EINPROGRESS 119 /* Connection already in progress */
#define pdFREERTOS_ERRNO_EALREADY 120 /* Socket already connected */
#define pdFREERTOS_ERRNO_EADDRNOTAVAIL 125 /* Address not available */
#define pdFREERTOS_ERRNO_EISCONN 127 /* Socket is already connected */
#define pdFREERTOS_ERRNO_ENOTCONN 128 /* Socket is not connected */
#define pdFREERTOS_ERRNO_ENOMEDIUM 135 /* No medium inserted */
#define pdFREERTOS_ERRNO_EILSEQ 138 /* An invalid UTF-16 sequence was encountered. */
#define pdFREERTOS_ERRNO_ECANCELED 140 /* Operation canceled. */
/* The following endian values are used by FreeRTOS+ components, not FreeRTOS
itself. */
#define pdFREERTOS_LITTLE_ENDIAN 0
#define pdFREERTOS_BIG_ENDIAN 1
#endif /* PROJDEFS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef QUEUE_H
#define QUEUE_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h" must appear in source files before "include queue.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* Type by which queues are referenced. For example, a call to xQueueCreate()
* returns an QueueHandle_t variable that can then be used as a parameter to
* xQueueSend(), xQueueReceive(), etc.
*/
typedef void * QueueHandle_t;
/**
* Type by which queue sets are referenced. For example, a call to
* xQueueCreateSet() returns an xQueueSet variable that can then be used as a
* parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
*/
typedef void * QueueSetHandle_t;
/**
* Queue sets can contain both queues and semaphores, so the
* QueueSetMemberHandle_t is defined as a type to be used where a parameter or
* return value can be either an QueueHandle_t or an SemaphoreHandle_t.
*/
typedef void * QueueSetMemberHandle_t;
/* For internal use only. */
#define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
#define queueSEND_TO_FRONT ( ( BaseType_t ) 1 )
#define queueOVERWRITE ( ( BaseType_t ) 2 )
/* For internal use only. These definitions *must* match those in queue.c. */
#define queueQUEUE_TYPE_BASE ( ( uint8_t ) 0U )
#define queueQUEUE_TYPE_SET ( ( uint8_t ) 0U )
#define queueQUEUE_TYPE_MUTEX ( ( uint8_t ) 1U )
#define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( uint8_t ) 2U )
#define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( uint8_t ) 3U )
#define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( uint8_t ) 4U )
/**
* queue. h
* <pre>
QueueHandle_t xQueueCreate(
UBaseType_t uxQueueLength,
UBaseType_t uxItemSize
);
* </pre>
*
* Creates a new queue instance, and returns a handle by which the new queue
* can be referenced.
*
* Internally, within the FreeRTOS implementation, queues use two blocks of
* memory. The first block is used to hold the queue's data structures. The
* second block is used to hold items placed into the queue. If a queue is
* created using xQueueCreate() then both blocks of memory are automatically
* dynamically allocated inside the xQueueCreate() function. (see
* http://www.freertos.org/a00111.html). If a queue is created using
* xQueueCreateStatic() then the application writer must provide the memory that
* will get used by the queue. xQueueCreateStatic() therefore allows a queue to
* be created without using any dynamic memory allocation.
*
* http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
*
* @param uxQueueLength The maximum number of items that the queue can contain.
*
* @param uxItemSize The number of bytes each item in the queue will require.
* Items are queued by copy, not by reference, so this is the number of bytes
* that will be copied for each posted item. Each item on the queue must be
* the same size.
*
* @return If the queue is successfully create then a handle to the newly
* created queue is returned. If the queue cannot be created then 0 is
* returned.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
};
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1, xQueue2;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
if( xQueue1 == 0 )
{
// Queue was not created and must not be used.
}
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
if( xQueue2 == 0 )
{
// Queue was not created and must not be used.
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueCreate xQueueCreate
* \ingroup QueueManagement
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
#define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( ( uxQueueLength ), ( uxItemSize ), ( queueQUEUE_TYPE_BASE ) )
#endif
/**
* queue. h
* <pre>
QueueHandle_t xQueueCreateStatic(
UBaseType_t uxQueueLength,
UBaseType_t uxItemSize,
uint8_t *pucQueueStorageBuffer,
StaticQueue_t *pxQueueBuffer
);
* </pre>
*
* Creates a new queue instance, and returns a handle by which the new queue
* can be referenced.
*
* Internally, within the FreeRTOS implementation, queues use two blocks of
* memory. The first block is used to hold the queue's data structures. The
* second block is used to hold items placed into the queue. If a queue is
* created using xQueueCreate() then both blocks of memory are automatically
* dynamically allocated inside the xQueueCreate() function. (see
* http://www.freertos.org/a00111.html). If a queue is created using
* xQueueCreateStatic() then the application writer must provide the memory that
* will get used by the queue. xQueueCreateStatic() therefore allows a queue to
* be created without using any dynamic memory allocation.
*
* http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
*
* @param uxQueueLength The maximum number of items that the queue can contain.
*
* @param uxItemSize The number of bytes each item in the queue will require.
* Items are queued by copy, not by reference, so this is the number of bytes
* that will be copied for each posted item. Each item on the queue must be
* the same size.
*
* @param pucQueueStorageBuffer If uxItemSize is not zero then
* pucQueueStorageBuffer must point to a uint8_t array that is at least large
* enough to hold the maximum number of items that can be in the queue at any
* one time - which is ( uxQueueLength * uxItemsSize ) bytes. If uxItemSize is
* zero then pucQueueStorageBuffer can be NULL.
*
* @param pxQueueBuffer Must point to a variable of type StaticQueue_t, which
* will be used to hold the queue's data structure.
*
* @return If the queue is created then a handle to the created queue is
* returned. If pxQueueBuffer is NULL then NULL is returned.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
};
#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof( uint32_t )
// xQueueBuffer will hold the queue structure.
StaticQueue_t xQueueBuffer;
// ucQueueStorage will hold the items posted to the queue. Must be at least
// [(queue length) * ( queue item size)] bytes long.
uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( QUEUE_LENGTH, // The number of items the queue can hold.
ITEM_SIZE // The size of each item in the queue
&( ucQueueStorage[ 0 ] ), // The buffer that will hold the items in the queue.
&xQueueBuffer ); // The buffer that will hold the queue structure.
// The queue is guaranteed to be created successfully as no dynamic memory
// allocation is used. Therefore xQueue1 is now a handle to a valid queue.
// ... Rest of task code.
}
</pre>
* \defgroup xQueueCreateStatic xQueueCreateStatic
* \ingroup QueueManagement
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define xQueueCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer ) xQueueGenericCreateStatic( ( uxQueueLength ), ( uxItemSize ), ( pucQueueStorage ), ( pxQueueBuffer ), ( queueQUEUE_TYPE_BASE ) )
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* queue. h
* <pre>
BaseType_t xQueueSendToToFront(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);
* </pre>
*
* This is a macro that calls xQueueGenericSend().
*
* Post an item to the front of a queue. The item is queued by copy, not by
* reference. This function must not be called from an interrupt service
* routine. See xQueueSendFromISR () for an alternative which may be used
* in an ISR.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for space to become available on the queue, should it already
* be full. The call will return immediately if this is set to 0 and the
* queue is full. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
*
* @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
uint32_t ulVar = 10UL;
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
// ...
if( xQueue1 != 0 )
{
// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
{
// Failed to post the message, even after 10 ticks.
}
}
if( xQueue2 != 0 )
{
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
/**
* queue. h
* <pre>
BaseType_t xQueueSendToBack(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);
* </pre>
*
* This is a macro that calls xQueueGenericSend().
*
* Post an item to the back of a queue. The item is queued by copy, not by
* reference. This function must not be called from an interrupt service
* routine. See xQueueSendFromISR () for an alternative which may be used
* in an ISR.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for space to become available on the queue, should it already
* be full. The call will return immediately if this is set to 0 and the queue
* is full. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
*
* @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
uint32_t ulVar = 10UL;
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
// ...
if( xQueue1 != 0 )
{
// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
{
// Failed to post the message, even after 10 ticks.
}
}
if( xQueue2 != 0 )
{
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
/**
* queue. h
* <pre>
BaseType_t xQueueSend(
QueueHandle_t xQueue,
const void * pvItemToQueue,
TickType_t xTicksToWait
);
* </pre>
*
* This is a macro that calls xQueueGenericSend(). It is included for
* backward compatibility with versions of FreeRTOS.org that did not
* include the xQueueSendToFront() and xQueueSendToBack() macros. It is
* equivalent to xQueueSendToBack().
*
* Post an item on a queue. The item is queued by copy, not by reference.
* This function must not be called from an interrupt service routine.
* See xQueueSendFromISR () for an alternative which may be used in an ISR.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for space to become available on the queue, should it already
* be full. The call will return immediately if this is set to 0 and the
* queue is full. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
*
* @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
uint32_t ulVar = 10UL;
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
// ...
if( xQueue1 != 0 )
{
// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
{
// Failed to post the message, even after 10 ticks.
}
}
if( xQueue2 != 0 )
{
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
/**
* queue. h
* <pre>
BaseType_t xQueueOverwrite(
QueueHandle_t xQueue,
const void * pvItemToQueue
);
* </pre>
*
* Only for use with queues that have a length of one - so the queue is either
* empty or full.
*
* Post an item on a queue. If the queue is already full then overwrite the
* value held in the queue. The item is queued by copy, not by reference.
*
* This function must not be called from an interrupt service routine.
* See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
*
* @param xQueue The handle of the queue to which the data is being sent.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
* therefore has the same return values as xQueueSendToFront(). However, pdPASS
* is the only value that can be returned because xQueueOverwrite() will write
* to the queue even when the queue is already full.
*
* Example usage:
<pre>
void vFunction( void *pvParameters )
{
QueueHandle_t xQueue;
uint32_t ulVarToSend, ulValReceived;
// Create a queue to hold one uint32_t value. It is strongly
// recommended *not* to use xQueueOverwrite() on queues that can
// contain more than one value, and doing so will trigger an assertion
// if configASSERT() is defined.
xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
// Write the value 10 to the queue using xQueueOverwrite().
ulVarToSend = 10;
xQueueOverwrite( xQueue, &ulVarToSend );
// Peeking the queue should now return 10, but leave the value 10 in
// the queue. A block time of zero is used as it is known that the
// queue holds a value.
ulValReceived = 0;
xQueuePeek( xQueue, &ulValReceived, 0 );
if( ulValReceived != 10 )
{
// Error unless the item was removed by a different task.
}
// The queue is still full. Use xQueueOverwrite() to overwrite the
// value held in the queue with 100.
ulVarToSend = 100;
xQueueOverwrite( xQueue, &ulVarToSend );
// This time read from the queue, leaving the queue empty once more.
// A block time of 0 is used again.
xQueueReceive( xQueue, &ulValReceived, 0 );
// The value read should be the last value written, even though the
// queue was already full when the value was written.
if( ulValReceived != 100 )
{
// Error!
}
// ...
}
</pre>
* \defgroup xQueueOverwrite xQueueOverwrite
* \ingroup QueueManagement
*/
#define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
/**
* queue. h
* <pre>
BaseType_t xQueueGenericSend(
QueueHandle_t xQueue,
const void * pvItemToQueue,
TickType_t xTicksToWait
BaseType_t xCopyPosition
);
* </pre>
*
* It is preferred that the macros xQueueSend(), xQueueSendToFront() and
* xQueueSendToBack() are used in place of calling this function directly.
*
* Post an item on a queue. The item is queued by copy, not by reference.
* This function must not be called from an interrupt service routine.
* See xQueueSendFromISR () for an alternative which may be used in an ISR.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for space to become available on the queue, should it already
* be full. The call will return immediately if this is set to 0 and the
* queue is full. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
*
* @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
* item at the back of the queue, or queueSEND_TO_FRONT to place the item
* at the front of the queue (for high priority messages).
*
* @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
uint32_t ulVar = 10UL;
void vATask( void *pvParameters )
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;
// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
// ...
if( xQueue1 != 0 )
{
// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
{
// Failed to post the message, even after 10 ticks.
}
}
if( xQueue2 != 0 )
{
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition );
/**
* queue. h
* <pre>
BaseType_t xQueuePeek(
QueueHandle_t xQueue,
void *pvBuffer,
TickType_t xTicksToWait
);</pre>
*
* This is a macro that calls the xQueueGenericReceive() function.
*
* Receive an item from a queue without removing the item from the queue.
* The item is received by copy so a buffer of adequate size must be
* provided. The number of bytes copied into the buffer was defined when
* the queue was created.
*
* Successfully received items remain on the queue so will be returned again
* by the next call, or a call to xQueueReceive().
*
* This macro must not be used in an interrupt service routine. See
* xQueuePeekFromISR() for an alternative that can be called from an interrupt
* service routine.
*
* @param xQueue The handle to the queue from which the item is to be
* received.
*
* @param pvBuffer Pointer to the buffer into which the received item will
* be copied.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for an item to receive should the queue be empty at the time
* of the call. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
* xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
* is empty.
*
* @return pdTRUE if an item was successfully received from the queue,
* otherwise pdFALSE.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
QueueHandle_t xQueue;
// Task to create a queue and post a value.
void vATask( void *pvParameters )
{
struct AMessage *pxMessage;
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
if( xQueue == 0 )
{
// Failed to create the queue.
}
// ...
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
// ... Rest of task code.
}
// Task to peek the data from the queue.
void vADifferentTask( void *pvParameters )
{
struct AMessage *pxRxedMessage;
if( xQueue != 0 )
{
// Peek a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
{
// pcRxedMessage now points to the struct AMessage variable posted
// by vATask, but the item still remains on the queue.
}
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
/**
* queue. h
* <pre>
BaseType_t xQueuePeekFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
);</pre>
*
* A version of xQueuePeek() that can be called from an interrupt service
* routine (ISR).
*
* Receive an item from a queue without removing the item from the queue.
* The item is received by copy so a buffer of adequate size must be
* provided. The number of bytes copied into the buffer was defined when
* the queue was created.
*
* Successfully received items remain on the queue so will be returned again
* by the next call, or a call to xQueueReceive().
*
* @param xQueue The handle to the queue from which the item is to be
* received.
*
* @param pvBuffer Pointer to the buffer into which the received item will
* be copied.
*
* @return pdTRUE if an item was successfully received from the queue,
* otherwise pdFALSE.
*
* \defgroup xQueuePeekFromISR xQueuePeekFromISR
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer );
/**
* queue. h
* <pre>
BaseType_t xQueueReceive(
QueueHandle_t xQueue,
void *pvBuffer,
TickType_t xTicksToWait
);</pre>
*
* This is a macro that calls the xQueueGenericReceive() function.
*
* Receive an item from a queue. The item is received by copy so a buffer of
* adequate size must be provided. The number of bytes copied into the buffer
* was defined when the queue was created.
*
* Successfully received items are removed from the queue.
*
* This function must not be used in an interrupt service routine. See
* xQueueReceiveFromISR for an alternative that can.
*
* @param xQueue The handle to the queue from which the item is to be
* received.
*
* @param pvBuffer Pointer to the buffer into which the received item will
* be copied.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for an item to receive should the queue be empty at the time
* of the call. xQueueReceive() will return immediately if xTicksToWait
* is zero and the queue is empty. The time is defined in tick periods so the
* constant portTICK_PERIOD_MS should be used to convert to real time if this is
* required.
*
* @return pdTRUE if an item was successfully received from the queue,
* otherwise pdFALSE.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
QueueHandle_t xQueue;
// Task to create a queue and post a value.
void vATask( void *pvParameters )
{
struct AMessage *pxMessage;
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
if( xQueue == 0 )
{
// Failed to create the queue.
}
// ...
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
// ... Rest of task code.
}
// Task to receive from the queue.
void vADifferentTask( void *pvParameters )
{
struct AMessage *pxRxedMessage;
if( xQueue != 0 )
{
// Receive a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
{
// pcRxedMessage now points to the struct AMessage variable posted
// by vATask.
}
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
/**
* queue. h
* <pre>
BaseType_t xQueueGenericReceive(
QueueHandle_t xQueue,
void *pvBuffer,
TickType_t xTicksToWait
BaseType_t xJustPeek
);</pre>
*
* It is preferred that the macro xQueueReceive() be used rather than calling
* this function directly.
*
* Receive an item from a queue. The item is received by copy so a buffer of
* adequate size must be provided. The number of bytes copied into the buffer
* was defined when the queue was created.
*
* This function must not be used in an interrupt service routine. See
* xQueueReceiveFromISR for an alternative that can.
*
* @param xQueue The handle to the queue from which the item is to be
* received.
*
* @param pvBuffer Pointer to the buffer into which the received item will
* be copied.
*
* @param xTicksToWait The maximum amount of time the task should block
* waiting for an item to receive should the queue be empty at the time
* of the call. The time is defined in tick periods so the constant
* portTICK_PERIOD_MS should be used to convert to real time if this is required.
* xQueueGenericReceive() will return immediately if the queue is empty and
* xTicksToWait is 0.
*
* @param xJustPeek When set to true, the item received from the queue is not
* actually removed from the queue - meaning a subsequent call to
* xQueueReceive() will return the same item. When set to false, the item
* being received from the queue is also removed from the queue.
*
* @return pdTRUE if an item was successfully received from the queue,
* otherwise pdFALSE.
*
* Example usage:
<pre>
struct AMessage
{
char ucMessageID;
char ucData[ 20 ];
} xMessage;
QueueHandle_t xQueue;
// Task to create a queue and post a value.
void vATask( void *pvParameters )
{
struct AMessage *pxMessage;
// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
if( xQueue == 0 )
{
// Failed to create the queue.
}
// ...
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
// ... Rest of task code.
}
// Task to receive from the queue.
void vADifferentTask( void *pvParameters )
{
struct AMessage *pxRxedMessage;
if( xQueue != 0 )
{
// Receive a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
{
// pcRxedMessage now points to the struct AMessage variable posted
// by vATask.
}
}
// ... Rest of task code.
}
</pre>
* \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek );
/**
* queue. h
* <pre>UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );</pre>
*
* Return the number of messages stored in a queue.
*
* @param xQueue A handle to the queue being queried.
*
* @return The number of messages available in the queue.
*
* \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );
/**
* queue. h
* <pre>UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );</pre>
*
* Return the number of free spaces available in a queue. This is equal to the
* number of items that can be sent to the queue before the queue becomes full
* if no items are removed.
*
* @param xQueue A handle to the queue being queried.
*
* @return The number of spaces available in the queue.
*
* \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );
/**
* queue. h
* <pre>void vQueueDelete( QueueHandle_t xQueue );</pre>
*
* Delete a queue - freeing all the memory allocated for storing of items
* placed on the queue.
*
* @param xQueue A handle to the queue to be deleted.
*
* \defgroup vQueueDelete vQueueDelete
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION void vQueueDelete( QueueHandle_t xQueue );
/**
* queue. h
* <pre>
BaseType_t xQueueSendToFrontFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
</pre>
*
* This is a macro that calls xQueueGenericSendFromISR().
*
* Post an item to the front of a queue. It is safe to use this macro from
* within an interrupt service routine.
*
* Items are queued by copy not reference so it is preferable to only
* queue small items, especially when called from an ISR. In most cases
* it would be preferable to store a pointer to the item being queued.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the data was successfully sent to the queue, otherwise
* errQUEUE_FULL.
*
* Example usage for buffered IO (where the ISR can obtain more than one value
* per call):
<pre>
void vBufferISR( void )
{
char cIn;
BaseType_t xHigherPrioritTaskWoken;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;
// Loop until the buffer is empty.
do
{
// Obtain a byte from the buffer.
cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
// Post the byte.
xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
} while( portINPUT_BYTE( BUFFER_COUNT ) );
// Now the buffer is empty we can switch context if necessary.
if( xHigherPriorityTaskWoken )
{
taskYIELD ();
}
}
</pre>
*
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
/**
* queue. h
* <pre>
BaseType_t xQueueSendToBackFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
</pre>
*
* This is a macro that calls xQueueGenericSendFromISR().
*
* Post an item to the back of a queue. It is safe to use this macro from
* within an interrupt service routine.
*
* Items are queued by copy not reference so it is preferable to only
* queue small items, especially when called from an ISR. In most cases
* it would be preferable to store a pointer to the item being queued.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the data was successfully sent to the queue, otherwise
* errQUEUE_FULL.
*
* Example usage for buffered IO (where the ISR can obtain more than one value
* per call):
<pre>
void vBufferISR( void )
{
char cIn;
BaseType_t xHigherPriorityTaskWoken;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;
// Loop until the buffer is empty.
do
{
// Obtain a byte from the buffer.
cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
// Post the byte.
xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
} while( portINPUT_BYTE( BUFFER_COUNT ) );
// Now the buffer is empty we can switch context if necessary.
if( xHigherPriorityTaskWoken )
{
taskYIELD ();
}
}
</pre>
*
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* queue. h
* <pre>
BaseType_t xQueueOverwriteFromISR(
QueueHandle_t xQueue,
const void * pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
* </pre>
*
* A version of xQueueOverwrite() that can be used in an interrupt service
* routine (ISR).
*
* Only for use with queues that can hold a single item - so the queue is either
* empty or full.
*
* Post an item on a queue. If the queue is already full then overwrite the
* value held in the queue. The item is queued by copy, not by reference.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return xQueueOverwriteFromISR() is a macro that calls
* xQueueGenericSendFromISR(), and therefore has the same return values as
* xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
* returned because xQueueOverwriteFromISR() will write to the queue even when
* the queue is already full.
*
* Example usage:
<pre>
QueueHandle_t xQueue;
void vFunction( void *pvParameters )
{
// Create a queue to hold one uint32_t value. It is strongly
// recommended *not* to use xQueueOverwriteFromISR() on queues that can
// contain more than one value, and doing so will trigger an assertion
// if configASSERT() is defined.
xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
}
void vAnInterruptHandler( void )
{
// xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
uint32_t ulVarToSend, ulValReceived;
// Write the value 10 to the queue using xQueueOverwriteFromISR().
ulVarToSend = 10;
xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
// The queue is full, but calling xQueueOverwriteFromISR() again will still
// pass because the value held in the queue will be overwritten with the
// new value.
ulVarToSend = 100;
xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
// Reading from the queue will now return 100.
// ...
if( xHigherPrioritytaskWoken == pdTRUE )
{
// Writing to the queue caused a task to unblock and the unblocked task
// has a priority higher than or equal to the priority of the currently
// executing task (the task this interrupt interrupted). Perform a context
// switch so this interrupt returns directly to the unblocked task.
portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
}
}
</pre>
* \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
* \ingroup QueueManagement
*/
#define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
/**
* queue. h
* <pre>
BaseType_t xQueueSendFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);
</pre>
*
* This is a macro that calls xQueueGenericSendFromISR(). It is included
* for backward compatibility with versions of FreeRTOS.org that did not
* include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
* macros.
*
* Post an item to the back of a queue. It is safe to use this function from
* within an interrupt service routine.
*
* Items are queued by copy not reference so it is preferable to only
* queue small items, especially when called from an ISR. In most cases
* it would be preferable to store a pointer to the item being queued.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xQueueSendFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the data was successfully sent to the queue, otherwise
* errQUEUE_FULL.
*
* Example usage for buffered IO (where the ISR can obtain more than one value
* per call):
<pre>
void vBufferISR( void )
{
char cIn;
BaseType_t xHigherPriorityTaskWoken;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;
// Loop until the buffer is empty.
do
{
// Obtain a byte from the buffer.
cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
// Post the byte.
xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
} while( portINPUT_BYTE( BUFFER_COUNT ) );
// Now the buffer is empty we can switch context if necessary.
if( xHigherPriorityTaskWoken )
{
// Actual macro used here is port specific.
portYIELD_FROM_ISR ();
}
}
</pre>
*
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* queue. h
* <pre>
BaseType_t xQueueGenericSendFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken,
BaseType_t xCopyPosition
);
</pre>
*
* It is preferred that the macros xQueueSendFromISR(),
* xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
* of calling this function directly. xQueueGiveFromISR() is an
* equivalent for use by semaphores that don't actually copy any data.
*
* Post an item on a queue. It is safe to use this function from within an
* interrupt service routine.
*
* Items are queued by copy not reference so it is preferable to only
* queue small items, especially when called from an ISR. In most cases
* it would be preferable to store a pointer to the item being queued.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
* item at the back of the queue, or queueSEND_TO_FRONT to place the item
* at the front of the queue (for high priority messages).
*
* @return pdTRUE if the data was successfully sent to the queue, otherwise
* errQUEUE_FULL.
*
* Example usage for buffered IO (where the ISR can obtain more than one value
* per call):
<pre>
void vBufferISR( void )
{
char cIn;
BaseType_t xHigherPriorityTaskWokenByPost;
// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWokenByPost = pdFALSE;
// Loop until the buffer is empty.
do
{
// Obtain a byte from the buffer.
cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
// Post each byte.
xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
} while( portINPUT_BYTE( BUFFER_COUNT ) );
// Now the buffer is empty we can switch context if necessary. Note that the
// name of the yield function required is port specific.
if( xHigherPriorityTaskWokenByPost )
{
taskYIELD_YIELD_FROM_ISR();
}
}
</pre>
*
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition );
PRIVILEGED_FUNCTION BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken );
/**
* queue. h
* <pre>
BaseType_t xQueueReceiveFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
BaseType_t *pxTaskWoken
);
* </pre>
*
* Receive an item from a queue. It is safe to use this function from within an
* interrupt service routine.
*
* @param xQueue The handle to the queue from which the item is to be
* received.
*
* @param pvBuffer Pointer to the buffer into which the received item will
* be copied.
*
* @param pxTaskWoken A task may be blocked waiting for space to become
* available on the queue. If xQueueReceiveFromISR causes such a task to
* unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
* remain unchanged.
*
* @return pdTRUE if an item was successfully received from the queue,
* otherwise pdFALSE.
*
* Example usage:
<pre>
QueueHandle_t xQueue;
// Function to create a queue and post some values.
void vAFunction( void *pvParameters )
{
char cValueToPost;
const TickType_t xTicksToWait = ( TickType_t )0xff;
// Create a queue capable of containing 10 characters.
xQueue = xQueueCreate( 10, sizeof( char ) );
if( xQueue == 0 )
{
// Failed to create the queue.
}
// ...
// Post some characters that will be used within an ISR. If the queue
// is full then this task will block for xTicksToWait ticks.
cValueToPost = 'a';
xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
cValueToPost = 'b';
xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
// ... keep posting characters ... this task may block when the queue
// becomes full.
cValueToPost = 'c';
xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
}
// ISR that outputs all the characters received on the queue.
void vISR_Routine( void )
{
BaseType_t xTaskWokenByReceive = pdFALSE;
char cRxedChar;
while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
{
// A character was received. Output the character now.
vOutputCharacter( cRxedChar );
// If removing the character from the queue woke the task that was
// posting onto the queue cTaskWokenByReceive will have been set to
// pdTRUE. No matter how many times this loop iterates only one
// task will be woken.
}
if( cTaskWokenByPost != ( char ) pdFALSE;
{
taskYIELD ();
}
}
</pre>
* \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
* \ingroup QueueManagement
*/
PRIVILEGED_FUNCTION BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken );
/*
* Utilities to query queues that are safe to use from an ISR. These utilities
* should be used only from witin an ISR, or within a critical section.
*/
PRIVILEGED_FUNCTION BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue );
PRIVILEGED_FUNCTION BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue );
PRIVILEGED_FUNCTION UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue );
/*
* The functions defined above are for passing data to and from tasks. The
* functions below are the equivalents for passing data to and from
* co-routines.
*
* These functions are called from the co-routine macro implementation and
* should not be called directly from application code. Instead use the macro
* wrappers defined within croutine.h.
*/
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken );
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxTaskWoken );
BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait );
/*
* For internal use only. Use xSemaphoreCreateMutex(),
* xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
* these functions directly.
*/
PRIVILEGED_FUNCTION QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType );
PRIVILEGED_FUNCTION QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue );
PRIVILEGED_FUNCTION QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount );
PRIVILEGED_FUNCTION QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue );
PRIVILEGED_FUNCTION void* xQueueGetMutexHolder( QueueHandle_t xSemaphore );
/*
* For internal use only. Use xSemaphoreTakeMutexRecursive() or
* xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
*/
PRIVILEGED_FUNCTION BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait );
PRIVILEGED_FUNCTION BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex );
/*
* Reset a queue back to its original empty state. The return value is now
* obsolete and is always set to pdPASS.
*/
#define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
/*
* The registry is provided as a means for kernel aware debuggers to
* locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
* a queue, semaphore or mutex handle to the registry if you want the handle
* to be available to a kernel aware debugger. If you are not using a kernel
* aware debugger then this function can be ignored.
*
* configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
* registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
* within FreeRTOSConfig.h for the registry to be available. Its value
* does not effect the number of queues, semaphores and mutexes that can be
* created - just the number that the registry can hold.
*
* @param xQueue The handle of the queue being added to the registry. This
* is the handle returned by a call to xQueueCreate(). Semaphore and mutex
* handles can also be passed in here.
*
* @param pcName The name to be associated with the handle. This is the
* name that the kernel aware debugger will display. The queue registry only
* stores a pointer to the string - so the string must be persistent (global or
* preferably in ROM/Flash), not on the stack.
*/
#if( configQUEUE_REGISTRY_SIZE > 0 )
PRIVILEGED_FUNCTION void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/*
* The registry is provided as a means for kernel aware debuggers to
* locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
* a queue, semaphore or mutex handle to the registry if you want the handle
* to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
* remove the queue, semaphore or mutex from the register. If you are not using
* a kernel aware debugger then this function can be ignored.
*
* @param xQueue The handle of the queue being removed from the registry.
*/
#if( configQUEUE_REGISTRY_SIZE > 0 )
PRIVILEGED_FUNCTION void vQueueUnregisterQueue( QueueHandle_t xQueue );
#endif
/*
* The queue registry is provided as a means for kernel aware debuggers to
* locate queues, semaphores and mutexes. Call pcQueueGetName() to look
* up and return the name of a queue in the queue registry from the queue's
* handle.
*
* @param xQueue The handle of the queue the name of which will be returned.
* @return If the queue is in the registry then a pointer to the name of the
* queue is returned. If the queue is not in the registry then NULL is
* returned.
*/
#if( configQUEUE_REGISTRY_SIZE > 0 )
PRIVILEGED_FUNCTION const char *pcQueueGetName( QueueHandle_t xQueue ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/*
* Generic version of the function used to creaet a queue using dynamic memory
* allocation. This is called by other functions and macros that create other
* RTOS objects that use the queue structure as their base.
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType );
#endif
/*
* Generic version of the function used to creaet a queue using dynamic memory
* allocation. This is called by other functions and macros that create other
* RTOS objects that use the queue structure as their base.
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType );
#endif
/*
* Queue sets provide a mechanism to allow a task to block (pend) on a read
* operation from multiple queues or semaphores simultaneously.
*
* See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
* function.
*
* A queue set must be explicitly created using a call to xQueueCreateSet()
* before it can be used. Once created, standard FreeRTOS queues and semaphores
* can be added to the set using calls to xQueueAddToSet().
* xQueueSelectFromSet() is then used to determine which, if any, of the queues
* or semaphores contained in the set is in a state where a queue read or
* semaphore take operation would be successful.
*
* Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
* for reasons why queue sets are very rarely needed in practice as there are
* simpler methods of blocking on multiple objects.
*
* Note 2: Blocking on a queue set that contains a mutex will not cause the
* mutex holder to inherit the priority of the blocked task.
*
* Note 3: An additional 4 bytes of RAM is required for each space in a every
* queue added to a queue set. Therefore counting semaphores that have a high
* maximum count value should not be added to a queue set.
*
* Note 4: A receive (in the case of a queue) or take (in the case of a
* semaphore) operation must not be performed on a member of a queue set unless
* a call to xQueueSelectFromSet() has first returned a handle to that set member.
*
* @param uxEventQueueLength Queue sets store events that occur on
* the queues and semaphores contained in the set. uxEventQueueLength specifies
* the maximum number of events that can be queued at once. To be absolutely
* certain that events are not lost uxEventQueueLength should be set to the
* total sum of the length of the queues added to the set, where binary
* semaphores and mutexes have a length of 1, and counting semaphores have a
* length set by their maximum count value. Examples:
* + If a queue set is to hold a queue of length 5, another queue of length 12,
* and a binary semaphore, then uxEventQueueLength should be set to
* (5 + 12 + 1), or 18.
* + If a queue set is to hold three binary semaphores then uxEventQueueLength
* should be set to (1 + 1 + 1 ), or 3.
* + If a queue set is to hold a counting semaphore that has a maximum count of
* 5, and a counting semaphore that has a maximum count of 3, then
* uxEventQueueLength should be set to (5 + 3), or 8.
*
* @return If the queue set is created successfully then a handle to the created
* queue set is returned. Otherwise NULL is returned.
*/
PRIVILEGED_FUNCTION QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength );
/*
* Adds a queue or semaphore to a queue set that was previously created by a
* call to xQueueCreateSet().
*
* See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
* function.
*
* Note 1: A receive (in the case of a queue) or take (in the case of a
* semaphore) operation must not be performed on a member of a queue set unless
* a call to xQueueSelectFromSet() has first returned a handle to that set member.
*
* @param xQueueOrSemaphore The handle of the queue or semaphore being added to
* the queue set (cast to an QueueSetMemberHandle_t type).
*
* @param xQueueSet The handle of the queue set to which the queue or semaphore
* is being added.
*
* @return If the queue or semaphore was successfully added to the queue set
* then pdPASS is returned. If the queue could not be successfully added to the
* queue set because it is already a member of a different queue set then pdFAIL
* is returned.
*/
PRIVILEGED_FUNCTION BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet );
/*
* Removes a queue or semaphore from a queue set. A queue or semaphore can only
* be removed from a set if the queue or semaphore is empty.
*
* See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
* function.
*
* @param xQueueOrSemaphore The handle of the queue or semaphore being removed
* from the queue set (cast to an QueueSetMemberHandle_t type).
*
* @param xQueueSet The handle of the queue set in which the queue or semaphore
* is included.
*
* @return If the queue or semaphore was successfully removed from the queue set
* then pdPASS is returned. If the queue was not in the queue set, or the
* queue (or semaphore) was not empty, then pdFAIL is returned.
*/
PRIVILEGED_FUNCTION BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet );
/*
* xQueueSelectFromSet() selects from the members of a queue set a queue or
* semaphore that either contains data (in the case of a queue) or is available
* to take (in the case of a semaphore). xQueueSelectFromSet() effectively
* allows a task to block (pend) on a read operation on all the queues and
* semaphores in a queue set simultaneously.
*
* See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
* function.
*
* Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
* for reasons why queue sets are very rarely needed in practice as there are
* simpler methods of blocking on multiple objects.
*
* Note 2: Blocking on a queue set that contains a mutex will not cause the
* mutex holder to inherit the priority of the blocked task.
*
* Note 3: A receive (in the case of a queue) or take (in the case of a
* semaphore) operation must not be performed on a member of a queue set unless
* a call to xQueueSelectFromSet() has first returned a handle to that set member.
*
* @param xQueueSet The queue set on which the task will (potentially) block.
*
* @param xTicksToWait The maximum time, in ticks, that the calling task will
* remain in the Blocked state (with other tasks executing) to wait for a member
* of the queue set to be ready for a successful queue read or semaphore take
* operation.
*
* @return xQueueSelectFromSet() will return the handle of a queue (cast to
* a QueueSetMemberHandle_t type) contained in the queue set that contains data,
* or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
* in the queue set that is available, or NULL if no such queue or semaphore
* exists before before the specified block time expires.
*/
PRIVILEGED_FUNCTION QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait );
/*
* A version of xQueueSelectFromSet() that can be used from an ISR.
*/
PRIVILEGED_FUNCTION QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet );
/* Not public API functions. */
PRIVILEGED_FUNCTION void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) ;
PRIVILEGED_FUNCTION BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue );
PRIVILEGED_FUNCTION void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber );
PRIVILEGED_FUNCTION UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue );
PRIVILEGED_FUNCTION uint8_t ucQueueGetQueueType( QueueHandle_t xQueue );
#ifdef __cplusplus
}
#endif
#endif /* QUEUE_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef SEMAPHORE_H
#define SEMAPHORE_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h" must appear in source files before "include semphr.h"
#endif
#include "queue.h"
typedef QueueHandle_t SemaphoreHandle_t;
#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U )
#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U )
#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U )
/**
* semphr. h
* <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
*
* In many usage scenarios it is faster and more memory efficient to use a
* direct to task notification in place of a binary semaphore!
* http://www.freertos.org/RTOS-task-notifications.html
*
* This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
* first call to 'take' the semaphore would pass, whereas binary semaphores
* created using xSemaphoreCreateBinary() are created in a state such that the
* the semaphore must first be 'given' before it can be 'taken'.
*
* <i>Macro</i> that implements a semaphore by using the existing queue mechanism.
* The queue length is 1 as this is a binary semaphore. The data size is 0
* as we don't want to actually store any data - we just want to know if the
* queue is empty or full.
*
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
* another continuously 'takes' the semaphore. For this reason this type of
* semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
* @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
vSemaphoreCreateBinary( xSemaphore );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
#define vSemaphoreCreateBinary( xSemaphore ) \
{ \
( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
if( ( xSemaphore ) != NULL ) \
{ \
( void ) xSemaphoreGive( ( xSemaphore ) ); \
} \
}
#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
*
* Creates a new binary semaphore instance, and returns a handle by which the
* new semaphore can be referenced.
*
* In many usage scenarios it is faster and more memory efficient to use a
* direct to task notification in place of a binary semaphore!
* http://www.freertos.org/RTOS-task-notifications.html
*
* Internally, within the FreeRTOS implementation, binary semaphores use a block
* of memory, in which the semaphore structure is stored. If a binary semaphore
* is created using xSemaphoreCreateBinary() then the required memory is
* automatically dynamically allocated inside the xSemaphoreCreateBinary()
* function. (see http://www.freertos.org/a00111.html). If a binary semaphore
* is created using xSemaphoreCreateBinaryStatic() then the application writer
* must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
* binary semaphore to be created without using any dynamic memory allocation.
*
* The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
* first call to 'take' the semaphore would pass, whereas binary semaphores
* created using xSemaphoreCreateBinary() are created in a state such that the
* the semaphore must first be 'given' before it can be 'taken'.
*
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
* another continuously 'takes' the semaphore. For this reason this type of
* semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
* @return Handle to the created semaphore, or NULL if the memory required to
* hold the semaphore's data structures could not be allocated.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateBinary().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateBinary();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup xSemaphoreCreateBinary xSemaphoreCreateBinary
* \ingroup Semaphores
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
#define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer )</pre>
*
* Creates a new binary semaphore instance, and returns a handle by which the
* new semaphore can be referenced.
*
* NOTE: In many usage scenarios it is faster and more memory efficient to use a
* direct to task notification in place of a binary semaphore!
* http://www.freertos.org/RTOS-task-notifications.html
*
* Internally, within the FreeRTOS implementation, binary semaphores use a block
* of memory, in which the semaphore structure is stored. If a binary semaphore
* is created using xSemaphoreCreateBinary() then the required memory is
* automatically dynamically allocated inside the xSemaphoreCreateBinary()
* function. (see http://www.freertos.org/a00111.html). If a binary semaphore
* is created using xSemaphoreCreateBinaryStatic() then the application writer
* must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
* binary semaphore to be created without using any dynamic memory allocation.
*
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
* another continuously 'takes' the semaphore. For this reason this type of
* semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
* @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
* which will then be used to hold the semaphore's data structure, removing the
* need for the memory to be allocated dynamically.
*
* @return If the semaphore is created then a handle to the created semaphore is
* returned. If pxSemaphoreBuffer is NULL then NULL is returned.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
StaticSemaphore_t xSemaphoreBuffer;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateBinary().
// The semaphore's data structures will be placed in the xSemaphoreBuffer
// variable, the address of which is passed into the function. The
// function's parameter is not NULL, so the function will not attempt any
// dynamic memory allocation, and therefore the function will not return
// return NULL.
xSemaphore = xSemaphoreCreateBinary( &xSemaphoreBuffer );
// Rest of task code goes here.
}
</pre>
* \defgroup xSemaphoreCreateBinaryStatic xSemaphoreCreateBinaryStatic
* \ingroup Semaphores
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define xSemaphoreCreateBinaryStatic( pxStaticSemaphore ) xQueueGenericCreateStatic( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticSemaphore, queueQUEUE_TYPE_BINARY_SEMAPHORE )
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>xSemaphoreTake(
* SemaphoreHandle_t xSemaphore,
* TickType_t xBlockTime
* )</pre>
*
* <i>Macro</i> to obtain a semaphore. The semaphore must have previously been
* created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting().
*
* @param xSemaphore A handle to the semaphore being taken - obtained when
* the semaphore was created.
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_PERIOD_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. A block
* time of portMAX_DELAY can be used to block indefinitely (provided
* INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
*
* @return pdTRUE if the semaphore was obtained. pdFALSE
* if xBlockTime expired without the semaphore becoming available.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
// A task that creates a semaphore.
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
xSemaphore = xSemaphoreCreateBinary();
}
// A task that uses the semaphore.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xSemaphore != NULL )
{
// See if we can obtain the semaphore. If the semaphore is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the semaphore and can now access the
// shared resource.
// ...
// We have finished accessing the shared resource. Release the
// semaphore.
xSemaphoreGive( xSemaphore );
}
else
{
// We could not obtain the semaphore and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreTake xSemaphoreTake
* \ingroup Semaphores
*/
#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
/**
* semphr. h
* xSemaphoreTakeRecursive(
* SemaphoreHandle_t xMutex,
* TickType_t xBlockTime
* )
*
* <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore.
* The mutex must have previously been created using a call to
* xSemaphoreCreateRecursiveMutex();
*
* configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
* macro to be available.
*
* This macro must not be used on mutexes created using xSemaphoreCreateMutex().
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* @param xMutex A handle to the mutex being obtained. This is the
* handle returned by xSemaphoreCreateRecursiveMutex();
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_PERIOD_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. If
* the task already owns the semaphore then xSemaphoreTakeRecursive() will
* return immediately no matter what the value of xBlockTime.
*
* @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime
* expired without the semaphore becoming available.
*
* Example usage:
<pre>
SemaphoreHandle_t xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, but instead buried in a more complex
// call structure. This is just for illustrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
* \ingroup Semaphores
*/
#if( configUSE_RECURSIVE_MUTEXES == 1 )
#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
#endif
/**
* semphr. h
* <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
* created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
*
* This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for
* an alternative which can be used from an ISR.
*
* This macro must also not be used on semaphores created using
* xSemaphoreCreateRecursiveMutex().
*
* @param xSemaphore A handle to the semaphore being released. This is the
* handle returned when the semaphore was created.
*
* @return pdTRUE if the semaphore was released. pdFALSE if an error occurred.
* Semaphores are implemented using queues. An error can occur if there is
* no space on the queue to post a message - indicating that the
* semaphore was not first obtained correctly.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
xSemaphore = vSemaphoreCreateBinary();
if( xSemaphore != NULL )
{
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would expect this call to fail because we cannot give
// a semaphore without first "taking" it!
}
// Obtain the semaphore - don't block if the semaphore is not
// immediately available.
if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
{
// We now have the semaphore and can access the shared resource.
// ...
// We have finished accessing the shared resource so can free the
// semaphore.
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would not expect this call to fail because we must have
// obtained the semaphore to get here.
}
}
}
}
</pre>
* \defgroup xSemaphoreGive xSemaphoreGive
* \ingroup Semaphores
*/
#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
* <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre>
*
* <i>Macro</i> to recursively release, or 'give', a mutex type semaphore.
* The mutex must have previously been created using a call to
* xSemaphoreCreateRecursiveMutex();
*
* configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
* macro to be available.
*
* This macro must not be used on mutexes created using xSemaphoreCreateMutex().
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* @param xMutex A handle to the mutex being released, or 'given'. This is the
* handle returned by xSemaphoreCreateMutex();
*
* @return pdTRUE if the semaphore was given.
*
* Example usage:
<pre>
SemaphoreHandle_t xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, it would be more likely that the calls
// to xSemaphoreGiveRecursive() would be called as a call stack
// unwound. This is just for demonstrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
* \ingroup Semaphores
*/
#if( configUSE_RECURSIVE_MUTEXES == 1 )
#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
#endif
/**
* semphr. h
* <pre>
xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
)</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
* created with a call to xSemaphoreCreateBinary() or xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
*
* This macro can be used from an ISR.
*
* @param xSemaphore A handle to the semaphore being released. This is the
* handle returned when the semaphore was created.
*
* @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
\#define LONG_TIME 0xffff
\#define TICKS_TO_WAIT 10
SemaphoreHandle_t xSemaphore = NULL;
// Repetitive task.
void vATask( void * pvParameters )
{
for( ;; )
{
// We want this task to run every 10 ticks of a timer. The semaphore
// was created before this task was started.
// Block waiting for the semaphore to become available.
if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
{
// It is time to execute.
// ...
// We have finished our task. Return to the top of the loop where
// we will block on the semaphore until it is time to execute
// again. Note when using the semaphore for synchronisation with an
// ISR in this manner there is no need to 'give' the semaphore back.
}
}
}
// Timer ISR
void vTimerISR( void * pvParameters )
{
static uint8_t ucLocalTickCount = 0;
static BaseType_t xHigherPriorityTaskWoken;
// A timer tick has occurred.
// ... Do other time functions.
// Is it time for vATask () to run?
xHigherPriorityTaskWoken = pdFALSE;
ucLocalTickCount++;
if( ucLocalTickCount >= TICKS_TO_WAIT )
{
// Unblock the task by releasing the semaphore.
xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
// Reset the count so we release the semaphore again in 10 ticks time.
ucLocalTickCount = 0;
}
if( xHigherPriorityTaskWoken != pdFALSE )
{
// We can force a context switch here. Context switching from an
// ISR uses port specific syntax. Check the demo task for your port
// to find the syntax required.
}
}
</pre>
* \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
* \ingroup Semaphores
*/
#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) )
/**
* semphr. h
* <pre>
xSemaphoreTakeFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
)</pre>
*
* <i>Macro</i> to take a semaphore from an ISR. The semaphore must have
* previously been created with a call to xSemaphoreCreateBinary() or
* xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
*
* This macro can be used from an ISR, however taking a semaphore from an ISR
* is not a common operation. It is likely to only be useful when taking a
* counting semaphore when an interrupt is obtaining an object from a resource
* pool (when the semaphore count indicates the number of resources available).
*
* @param xSemaphore A handle to the semaphore being taken. This is the
* handle returned when the semaphore was created.
*
* @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the semaphore was successfully taken, otherwise
* pdFALSE
*/
#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) )
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
*
* Creates a new mutex type semaphore instance, and returns a handle by which
* the new mutex can be referenced.
*
* Internally, within the FreeRTOS implementation, mutex semaphores use a block
* of memory, in which the mutex structure is stored. If a mutex is created
* using xSemaphoreCreateMutex() then the required memory is automatically
* dynamically allocated inside the xSemaphoreCreateMutex() function. (see
* http://www.freertos.org/a00111.html). If a mutex is created using
* xSemaphoreCreateMutexStatic() then the application writer must provided the
* memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
* without using any dynamic memory allocation.
*
* Mutexes created using this function can be accessed using the xSemaphoreTake()
* and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
* xSemaphoreGiveRecursive() macros must not be used.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @return If the mutex was successfully created then a handle to the created
* semaphore is returned. If there was not enough heap to allocate the mutex
* data structures then NULL is returned.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup xSemaphoreCreateMutex xSemaphoreCreateMutex
* \ingroup Semaphores
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
#define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
*
* Creates a new mutex type semaphore instance, and returns a handle by which
* the new mutex can be referenced.
*
* Internally, within the FreeRTOS implementation, mutex semaphores use a block
* of memory, in which the mutex structure is stored. If a mutex is created
* using xSemaphoreCreateMutex() then the required memory is automatically
* dynamically allocated inside the xSemaphoreCreateMutex() function. (see
* http://www.freertos.org/a00111.html). If a mutex is created using
* xSemaphoreCreateMutexStatic() then the application writer must provided the
* memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
* without using any dynamic memory allocation.
*
* Mutexes created using this function can be accessed using the xSemaphoreTake()
* and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
* xSemaphoreGiveRecursive() macros must not be used.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
* which will be used to hold the mutex's data structure, removing the need for
* the memory to be allocated dynamically.
*
* @return If the mutex was successfully created then a handle to the created
* mutex is returned. If pxMutexBuffer was NULL then NULL is returned.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xMutexBuffer;
void vATask( void * pvParameters )
{
// A mutex cannot be used before it has been created. xMutexBuffer is
// into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is
// attempted.
xSemaphore = xSemaphoreCreateMutexStatic( &xMutexBuffer );
// As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
// so there is no need to check it.
}
</pre>
* \defgroup xSemaphoreCreateMutexStatic xSemaphoreCreateMutexStatic
* \ingroup Semaphores
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define xSemaphoreCreateMutexStatic( pxMutexBuffer ) xQueueCreateMutexStatic( queueQUEUE_TYPE_MUTEX, ( pxMutexBuffer ) )
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
*
* Creates a new recursive mutex type semaphore instance, and returns a handle
* by which the new recursive mutex can be referenced.
*
* Internally, within the FreeRTOS implementation, recursive mutexs use a block
* of memory, in which the mutex structure is stored. If a recursive mutex is
* created using xSemaphoreCreateRecursiveMutex() then the required memory is
* automatically dynamically allocated inside the
* xSemaphoreCreateRecursiveMutex() function. (see
* http://www.freertos.org/a00111.html). If a recursive mutex is created using
* xSemaphoreCreateRecursiveMutexStatic() then the application writer must
* provide the memory that will get used by the mutex.
* xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
* be created without using any dynamic memory allocation.
*
* Mutexes created using this macro can be accessed using the
* xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
* xSemaphoreTake() and xSemaphoreGive() macros must not be used.
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @return xSemaphore Handle to the created mutex semaphore. Should be of type
* SemaphoreHandle_t.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateRecursiveMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup xSemaphoreCreateRecursiveMutex xSemaphoreCreateRecursiveMutex
* \ingroup Semaphores
*/
#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
*
* Creates a new recursive mutex type semaphore instance, and returns a handle
* by which the new recursive mutex can be referenced.
*
* Internally, within the FreeRTOS implementation, recursive mutexs use a block
* of memory, in which the mutex structure is stored. If a recursive mutex is
* created using xSemaphoreCreateRecursiveMutex() then the required memory is
* automatically dynamically allocated inside the
* xSemaphoreCreateRecursiveMutex() function. (see
* http://www.freertos.org/a00111.html). If a recursive mutex is created using
* xSemaphoreCreateRecursiveMutexStatic() then the application writer must
* provide the memory that will get used by the mutex.
* xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
* be created without using any dynamic memory allocation.
*
* Mutexes created using this macro can be accessed using the
* xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
* xSemaphoreTake() and xSemaphoreGive() macros must not be used.
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
* which will then be used to hold the recursive mutex's data structure,
* removing the need for the memory to be allocated dynamically.
*
* @return If the recursive mutex was successfully created then a handle to the
* created recursive mutex is returned. If pxMutexBuffer was NULL then NULL is
* returned.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xMutexBuffer;
void vATask( void * pvParameters )
{
// A recursive semaphore cannot be used before it is created. Here a
// recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic().
// The address of xMutexBuffer is passed into the function, and will hold
// the mutexes data structures - so no dynamic memory allocation will be
// attempted.
xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xMutexBuffer );
// As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
// so there is no need to check it.
}
</pre>
* \defgroup xSemaphoreCreateRecursiveMutexStatic xSemaphoreCreateRecursiveMutexStatic
* \ingroup Semaphores
*/
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
#define xSemaphoreCreateRecursiveMutexStatic( pxStaticSemaphore ) xQueueCreateMutexStatic( queueQUEUE_TYPE_RECURSIVE_MUTEX, pxStaticSemaphore )
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
*
* Creates a new counting semaphore instance, and returns a handle by which the
* new counting semaphore can be referenced.
*
* In many usage scenarios it is faster and more memory efficient to use a
* direct to task notification in place of a counting semaphore!
* http://www.freertos.org/RTOS-task-notifications.html
*
* Internally, within the FreeRTOS implementation, counting semaphores use a
* block of memory, in which the counting semaphore structure is stored. If a
* counting semaphore is created using xSemaphoreCreateCounting() then the
* required memory is automatically dynamically allocated inside the
* xSemaphoreCreateCounting() function. (see
* http://www.freertos.org/a00111.html). If a counting semaphore is created
* using xSemaphoreCreateCountingStatic() then the application writer can
* instead optionally provide the memory that will get used by the counting
* semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting
* semaphore to be created without using any dynamic memory allocation.
*
* Counting semaphores are typically used for two things:
*
* 1) Counting events.
*
* In this usage scenario an event handler will 'give' a semaphore each time
* an event occurs (incrementing the semaphore count value), and a handler
* task will 'take' a semaphore each time it processes an event
* (decrementing the semaphore count value). The count value is therefore
* the difference between the number of events that have occurred and the
* number that have been processed. In this case it is desirable for the
* initial count value to be zero.
*
* 2) Resource management.
*
* In this usage scenario the count value indicates the number of resources
* available. To obtain control of a resource a task must first obtain a
* semaphore - decrementing the semaphore count value. When the count value
* reaches zero there are no free resources. When a task finishes with the
* resource it 'gives' the semaphore back - incrementing the semaphore count
* value. In this case it is desirable for the initial count value to be
* equal to the maximum count value, indicating that all resources are free.
*
* @param uxMaxCount The maximum count value that can be reached. When the
* semaphore reaches this value it can no longer be 'given'.
*
* @param uxInitialCount The count value assigned to the semaphore when it is
* created.
*
* @return Handle to the created semaphore. Null if the semaphore could not be
* created.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
SemaphoreHandle_t xSemaphore = NULL;
// Semaphore cannot be used before a call to xSemaphoreCreateCounting().
// The max value to which the semaphore can count should be 10, and the
// initial value assigned to the count should be 0.
xSemaphore = xSemaphoreCreateCounting( 10, 0 );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
* \ingroup Semaphores
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount, StaticSemaphore_t *pxSemaphoreBuffer )</pre>
*
* Creates a new counting semaphore instance, and returns a handle by which the
* new counting semaphore can be referenced.
*
* In many usage scenarios it is faster and more memory efficient to use a
* direct to task notification in place of a counting semaphore!
* http://www.freertos.org/RTOS-task-notifications.html
*
* Internally, within the FreeRTOS implementation, counting semaphores use a
* block of memory, in which the counting semaphore structure is stored. If a
* counting semaphore is created using xSemaphoreCreateCounting() then the
* required memory is automatically dynamically allocated inside the
* xSemaphoreCreateCounting() function. (see
* http://www.freertos.org/a00111.html). If a counting semaphore is created
* using xSemaphoreCreateCountingStatic() then the application writer must
* provide the memory. xSemaphoreCreateCountingStatic() therefore allows a
* counting semaphore to be created without using any dynamic memory allocation.
*
* Counting semaphores are typically used for two things:
*
* 1) Counting events.
*
* In this usage scenario an event handler will 'give' a semaphore each time
* an event occurs (incrementing the semaphore count value), and a handler
* task will 'take' a semaphore each time it processes an event
* (decrementing the semaphore count value). The count value is therefore
* the difference between the number of events that have occurred and the
* number that have been processed. In this case it is desirable for the
* initial count value to be zero.
*
* 2) Resource management.
*
* In this usage scenario the count value indicates the number of resources
* available. To obtain control of a resource a task must first obtain a
* semaphore - decrementing the semaphore count value. When the count value
* reaches zero there are no free resources. When a task finishes with the
* resource it 'gives' the semaphore back - incrementing the semaphore count
* value. In this case it is desirable for the initial count value to be
* equal to the maximum count value, indicating that all resources are free.
*
* @param uxMaxCount The maximum count value that can be reached. When the
* semaphore reaches this value it can no longer be 'given'.
*
* @param uxInitialCount The count value assigned to the semaphore when it is
* created.
*
* @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
* which will then be used to hold the semaphore's data structure, removing the
* need for the memory to be allocated dynamically.
*
* @return If the counting semaphore was successfully created then a handle to
* the created counting semaphore is returned. If pxSemaphoreBuffer was NULL
* then NULL is returned.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xSemaphoreBuffer;
void vATask( void * pvParameters )
{
SemaphoreHandle_t xSemaphore = NULL;
// Counting semaphore cannot be used before they have been created. Create
// a counting semaphore using xSemaphoreCreateCountingStatic(). The max
// value to which the semaphore can count is 10, and the initial value
// assigned to the count will be 0. The address of xSemaphoreBuffer is
// passed in and will be used to hold the semaphore structure, so no dynamic
// memory allocation will be used.
xSemaphore = xSemaphoreCreateCounting( 10, 0, &xSemaphoreBuffer );
// No memory allocation was attempted so xSemaphore cannot be NULL, so there
// is no need to check its value.
}
</pre>
* \defgroup xSemaphoreCreateCountingStatic xSemaphoreCreateCountingStatic
* \ingroup Semaphores
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
#define xSemaphoreCreateCountingStatic( uxMaxCount, uxInitialCount, pxSemaphoreBuffer ) xQueueCreateCountingSemaphoreStatic( ( uxMaxCount ), ( uxInitialCount ), ( pxSemaphoreBuffer ) )
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre>
*
* Delete a semaphore. This function must be used with care. For example,
* do not delete a mutex type semaphore if the mutex is held by a task.
*
* @param xSemaphore A handle to the semaphore to be deleted.
*
* \defgroup vSemaphoreDelete vSemaphoreDelete
* \ingroup Semaphores
*/
#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) )
/**
* semphr.h
* <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre>
*
* If xMutex is indeed a mutex type semaphore, return the current mutex holder.
* If xMutex is not a mutex type semaphore, or the mutex is available (not held
* by a task), return NULL.
*
* Note: This is a good way of determining if the calling task is the mutex
* holder, but not a good way of determining the identity of the mutex holder as
* the holder may change between the function exiting and the returned value
* being tested.
*/
#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
/**
* semphr.h
* <pre>UBaseType_t uxSemaphoreGetCount( SemaphoreHandle_t xSemaphore );</pre>
*
* If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns
* its current count value. If the semaphore is a binary semaphore then
* uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0 if the
* semaphore is not available.
*
*/
#define uxSemaphoreGetCount( xSemaphore ) uxQueueMessagesWaiting( ( QueueHandle_t ) ( xSemaphore ) )
#endif /* SEMAPHORE_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef INC_TASK_H
#define INC_TASK_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h must appear in source files before include task.h"
#endif
#include "list.h"
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* MACROS AND DEFINITIONS
*----------------------------------------------------------*/
#define tskKERNEL_VERSION_NUMBER "V9.0.0"
#define tskKERNEL_VERSION_MAJOR 9
#define tskKERNEL_VERSION_MINOR 0
#define tskKERNEL_VERSION_BUILD 0
/**
* task. h
*
* Type by which tasks are referenced. For example, a call to xTaskCreate
* returns (via a pointer parameter) an TaskHandle_t variable that can then
* be used as a parameter to vTaskDelete to delete the task.
*
* \defgroup TaskHandle_t TaskHandle_t
* \ingroup Tasks
*/
typedef void * TaskHandle_t;
/*
* Defines the prototype to which the application task hook function must
* conform.
*/
typedef BaseType_t (*TaskHookFunction_t)( void * );
/* Task states returned by eTaskGetState. */
typedef enum
{
eRunning = 0, /* A task is querying the state of itself, so must be running. */
eReady, /* The task being queried is in a read or pending ready list. */
eBlocked, /* The task being queried is in the Blocked state. */
eSuspended, /* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
eDeleted, /* The task being queried has been deleted, but its TCB has not yet been freed. */
eInvalid /* Used as an 'invalid state' value. */
} eTaskState;
/* Actions that can be performed when vTaskNotify() is called. */
typedef enum
{
eNoAction = 0, /* Notify the task without updating its notify value. */
eSetBits, /* Set bits in the task's notification value. */
eIncrement, /* Increment the task's notification value. */
eSetValueWithOverwrite, /* Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */
eSetValueWithoutOverwrite /* Set the task's notification value if the previous value has been read by the task. */
} eNotifyAction;
/*
* Used internally only.
*/
typedef struct xTIME_OUT
{
BaseType_t xOverflowCount;
TickType_t xTimeOnEntering;
} TimeOut_t;
/*
* Defines the memory ranges allocated to the task when an MPU is used.
*/
typedef struct xMEMORY_REGION
{
void *pvBaseAddress;
uint32_t ulLengthInBytes;
uint32_t ulParameters;
} MemoryRegion_t;
/*
* Parameters required to create an MPU protected task.
*/
typedef struct xTASK_PARAMETERS
{
TaskFunction_t pvTaskCode;
const char * const pcName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
uint16_t usStackDepth;
void *pvParameters;
UBaseType_t uxPriority;
StackType_t *puxStackBuffer;
MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ];
} TaskParameters_t;
/* Used with the uxTaskGetSystemState() function to return the state of each task
in the system. */
typedef struct xTASK_STATUS
{
TaskHandle_t xHandle; /* The handle of the task to which the rest of the information in the structure relates. */
const char *pcTaskName; /* A pointer to the task's name. This value will be invalid if the task was deleted since the structure was populated! */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
UBaseType_t xTaskNumber; /* A number unique to the task. */
eTaskState eCurrentState; /* The state in which the task existed when the structure was populated. */
UBaseType_t uxCurrentPriority; /* The priority at which the task was running (may be inherited) when the structure was populated. */
UBaseType_t uxBasePriority; /* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
uint32_t ulRunTimeCounter; /* The total run time allocated to the task so far, as defined by the run time stats clock. See http://www.freertos.org/rtos-run-time-stats.html. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
StackType_t *pxStackBase; /* Points to the lowest address of the task's stack area. */
uint16_t usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
} TaskStatus_t;
/* Possible return values for eTaskConfirmSleepModeStatus(). */
typedef enum
{
eAbortSleep = 0, /* A task has been made ready or a context switch pended since portSUPPORESS_TICKS_AND_SLEEP() was called - abort entering a sleep mode. */
eStandardSleep, /* Enter a sleep mode that will not last any longer than the expected idle time. */
eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
} eSleepModeStatus;
/**
* Defines the priority used by the idle task. This must not be modified.
*
* \ingroup TaskUtils
*/
#define tskIDLE_PRIORITY ( ( UBaseType_t ) 0U )
/**
* task. h
*
* Macro for forcing a context switch.
*
* \defgroup taskYIELD taskYIELD
* \ingroup SchedulerControl
*/
#define taskYIELD() portYIELD()
/**
* task. h
*
* Macro to mark the start of a critical code region. Preemptive context
* switches cannot occur when in a critical region.
*
* NOTE: This may alter the stack (depending on the portable implementation)
* so must be used with care!
*
* \defgroup taskENTER_CRITICAL taskENTER_CRITICAL
* \ingroup SchedulerControl
*/
#define taskENTER_CRITICAL() portENTER_CRITICAL()
#define taskENTER_CRITICAL_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR()
/**
* task. h
*
* Macro to mark the end of a critical code region. Preemptive context
* switches cannot occur when in a critical region.
*
* NOTE: This may alter the stack (depending on the portable implementation)
* so must be used with care!
*
* \defgroup taskEXIT_CRITICAL taskEXIT_CRITICAL
* \ingroup SchedulerControl
*/
#define taskEXIT_CRITICAL() portEXIT_CRITICAL()
#define taskEXIT_CRITICAL_FROM_ISR( x ) portCLEAR_INTERRUPT_MASK_FROM_ISR( x )
/**
* task. h
*
* Macro to disable all maskable interrupts.
*
* \defgroup taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS
* \ingroup SchedulerControl
*/
#define taskDISABLE_INTERRUPTS() portDISABLE_INTERRUPTS()
/**
* task. h
*
* Macro to enable microcontroller interrupts.
*
* \defgroup taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS
* \ingroup SchedulerControl
*/
#define taskENABLE_INTERRUPTS() portENABLE_INTERRUPTS()
/* Definitions returned by xTaskGetSchedulerState(). taskSCHEDULER_SUSPENDED is
0 to generate more optimal code when configASSERT() is defined as the constant
is used in assert() statements. */
#define taskSCHEDULER_SUSPENDED ( ( BaseType_t ) 0 )
#define taskSCHEDULER_NOT_STARTED ( ( BaseType_t ) 1 )
#define taskSCHEDULER_RUNNING ( ( BaseType_t ) 2 )
/*-----------------------------------------------------------
* TASK CREATION API
*----------------------------------------------------------*/
/**
* task. h
*<pre>
BaseType_t xTaskCreate(
TaskFunction_t pvTaskCode,
const char * const pcName,
uint16_t usStackDepth,
void *pvParameters,
UBaseType_t uxPriority,
TaskHandle_t *pvCreatedTask
);</pre>
*
* Create a new task and add it to the list of tasks that are ready to run.
*
* Internally, within the FreeRTOS implementation, tasks use two blocks of
* memory. The first block is used to hold the task's data structures. The
* second block is used by the task as its stack. If a task is created using
* xTaskCreate() then both blocks of memory are automatically dynamically
* allocated inside the xTaskCreate() function. (see
* http://www.freertos.org/a00111.html). If a task is created using
* xTaskCreateStatic() then the application writer must provide the required
* memory. xTaskCreateStatic() therefore allows a task to be created without
* using any dynamic memory allocation.
*
* See xTaskCreateStatic() for a version that does not use any dynamic memory
* allocation.
*
* xTaskCreate() can only be used to create a task that has unrestricted
* access to the entire microcontroller memory map. Systems that include MPU
* support can alternatively create an MPU constrained task using
* xTaskCreateRestricted().
*
* @param pvTaskCode Pointer to the task entry function. Tasks
* must be implemented to never return (i.e. continuous loop).
*
* @param pcName A descriptive name for the task. This is mainly used to
* facilitate debugging. Max length defined by configMAX_TASK_NAME_LEN - default
* is 16.
*
* @param usStackDepth The size of the task stack specified as the number of
* variables the stack can hold - not the number of bytes. For example, if
* the stack is 16 bits wide and usStackDepth is defined as 100, 200 bytes
* will be allocated for stack storage.
*
* @param pvParameters Pointer that will be used as the parameter for the task
* being created.
*
* @param uxPriority The priority at which the task should run. Systems that
* include MPU support can optionally create tasks in a privileged (system)
* mode by setting bit portPRIVILEGE_BIT of the priority parameter. For
* example, to create a privileged task at priority 2 the uxPriority parameter
* should be set to ( 2 | portPRIVILEGE_BIT ).
*
* @param pvCreatedTask Used to pass back a handle by which the created task
* can be referenced.
*
* @return pdPASS if the task was successfully created and added to a ready
* list, otherwise an error code defined in the file projdefs.h
*
* Example usage:
<pre>
// Task to be created.
void vTaskCode( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
}
}
// Function that creates a task.
void vOtherFunction( void )
{
static uint8_t ucParameterToPass;
TaskHandle_t xHandle = NULL;
// Create the task, storing the handle. Note that the passed parameter ucParameterToPass
// must exist for the lifetime of the task, so in this case is declared static. If it was just an
// an automatic stack variable it might no longer exist, or at least have been corrupted, by the time
// the new task attempts to access it.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle );
configASSERT( xHandle );
// Use the handle to delete the task.
if( xHandle != NULL )
{
vTaskDelete( xHandle );
}
}
</pre>
* \defgroup xTaskCreate xTaskCreate
* \ingroup Tasks
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint16_t usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/**
* task. h
*<pre>
TaskHandle_t xTaskCreateStatic( TaskFunction_t pvTaskCode,
const char * const pcName,
uint32_t ulStackDepth,
void *pvParameters,
UBaseType_t uxPriority,
StackType_t *pxStackBuffer,
StaticTask_t *pxTaskBuffer );</pre>
*
* Create a new task and add it to the list of tasks that are ready to run.
*
* Internally, within the FreeRTOS implementation, tasks use two blocks of
* memory. The first block is used to hold the task's data structures. The
* second block is used by the task as its stack. If a task is created using
* xTaskCreate() then both blocks of memory are automatically dynamically
* allocated inside the xTaskCreate() function. (see
* http://www.freertos.org/a00111.html). If a task is created using
* xTaskCreateStatic() then the application writer must provide the required
* memory. xTaskCreateStatic() therefore allows a task to be created without
* using any dynamic memory allocation.
*
* @param pvTaskCode Pointer to the task entry function. Tasks
* must be implemented to never return (i.e. continuous loop).
*
* @param pcName A descriptive name for the task. This is mainly used to
* facilitate debugging. The maximum length of the string is defined by
* configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
*
* @param ulStackDepth The size of the task stack specified as the number of
* variables the stack can hold - not the number of bytes. For example, if
* the stack is 32-bits wide and ulStackDepth is defined as 100 then 400 bytes
* will be allocated for stack storage.
*
* @param pvParameters Pointer that will be used as the parameter for the task
* being created.
*
* @param uxPriority The priority at which the task will run.
*
* @param pxStackBuffer Must point to a StackType_t array that has at least
* ulStackDepth indexes - the array will then be used as the task's stack,
* removing the need for the stack to be allocated dynamically.
*
* @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
* then be used to hold the task's data structures, removing the need for the
* memory to be allocated dynamically.
*
* @return If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will
* be created and pdPASS is returned. If either pxStackBuffer or pxTaskBuffer
* are NULL then the task will not be created and
* errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.
*
* Example usage:
<pre>
// Dimensions the buffer that the task being created will use as its stack.
// NOTE: This is the number of words the stack will hold, not the number of
// bytes. For example, if each stack item is 32-bits, and this is set to 100,
// then 400 bytes (100 * 32-bits) will be allocated.
#define STACK_SIZE 200
// Structure that will hold the TCB of the task being created.
StaticTask_t xTaskBuffer;
// Buffer that the task being created will use as its stack. Note this is
// an array of StackType_t variables. The size of StackType_t is dependent on
// the RTOS port.
StackType_t xStack[ STACK_SIZE ];
// Function that implements the task being created.
void vTaskCode( void * pvParameters )
{
// The parameter value is expected to be 1 as 1 is passed in the
// pvParameters value in the call to xTaskCreateStatic().
configASSERT( ( uint32_t ) pvParameters == 1UL );
for( ;; )
{
// Task code goes here.
}
}
// Function that creates a task.
void vOtherFunction( void )
{
TaskHandle_t xHandle = NULL;
// Create the task without using any dynamic memory allocation.
xHandle = xTaskCreateStatic(
vTaskCode, // Function that implements the task.
"NAME", // Text name for the task.
STACK_SIZE, // Stack size in words, not bytes.
( void * ) 1, // Parameter passed into the task.
tskIDLE_PRIORITY,// Priority at which the task is created.
xStack, // Array to use as the task's stack.
&xTaskBuffer ); // Variable to hold the task's data structure.
// puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
// been created, and xHandle will be the task's handle. Use the handle
// to suspend the task.
vTaskSuspend( xHandle );
}
</pre>
* \defgroup xTaskCreateStatic xTaskCreateStatic
* \ingroup Tasks
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
const char * const pcName,
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* task. h
*<pre>
BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );</pre>
*
* xTaskCreateRestricted() should only be used in systems that include an MPU
* implementation.
*
* Create a new task and add it to the list of tasks that are ready to run.
* The function parameters define the memory regions and associated access
* permissions allocated to the task.
*
* @param pxTaskDefinition Pointer to a structure that contains a member
* for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
* documentation) plus an optional stack buffer and the memory region
* definitions.
*
* @param pxCreatedTask Used to pass back a handle by which the created task
* can be referenced.
*
* @return pdPASS if the task was successfully created and added to a ready
* list, otherwise an error code defined in the file projdefs.h
*
* Example usage:
<pre>
// Create an TaskParameters_t structure that defines the task to be created.
static const TaskParameters_t xCheckTaskParameters =
{
vATask, // pvTaskCode - the function that implements the task.
"ATask", // pcName - just a text name for the task to assist debugging.
100, // usStackDepth - the stack size DEFINED IN WORDS.
NULL, // pvParameters - passed into the task function as the function parameters.
( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
// xRegions - Allocate up to three separate memory regions for access by
// the task, with appropriate access permissions. Different processors have
// different memory alignment requirements - refer to the FreeRTOS documentation
// for full information.
{
// Base address Length Parameters
{ cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
{ cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
{ cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE }
}
};
int main( void )
{
TaskHandle_t xHandle;
// Create a task from the const structure defined above. The task handle
// is requested (the second parameter is not NULL) but in this case just for
// demonstration purposes as its not actually used.
xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
// Start the scheduler.
vTaskStartScheduler();
// Will only get here if there was insufficient memory to create the idle
// and/or timer task.
for( ;; );
}
</pre>
* \defgroup xTaskCreateRestricted xTaskCreateRestricted
* \ingroup Tasks
*/
#if( portUSING_MPU_WRAPPERS == 1 )
PRIVILEGED_FUNCTION BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask );
#endif
/**
* task. h
*<pre>
void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );</pre>
*
* Memory regions are assigned to a restricted task when the task is created by
* a call to xTaskCreateRestricted(). These regions can be redefined using
* vTaskAllocateMPURegions().
*
* @param xTask The handle of the task being updated.
*
* @param xRegions A pointer to an MemoryRegion_t structure that contains the
* new memory region definitions.
*
* Example usage:
<pre>
// Define an array of MemoryRegion_t structures that configures an MPU region
// allowing read/write access for 1024 bytes starting at the beginning of the
// ucOneKByte array. The other two of the maximum 3 definable regions are
// unused so set to zero.
static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
{
// Base address Length Parameters
{ ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
{ 0, 0, 0 },
{ 0, 0, 0 }
};
void vATask( void *pvParameters )
{
// This task was created such that it has access to certain regions of
// memory as defined by the MPU configuration. At some point it is
// desired that these MPU regions are replaced with that defined in the
// xAltRegions const struct above. Use a call to vTaskAllocateMPURegions()
// for this purpose. NULL is used as the task handle to indicate that this
// function should modify the MPU regions of the calling task.
vTaskAllocateMPURegions( NULL, xAltRegions );
// Now the task can continue its function, but from this point on can only
// access its stack and the ucOneKByte array (unless any other statically
// defined or shared regions have been declared elsewhere).
}
</pre>
* \defgroup xTaskCreateRestricted xTaskCreateRestricted
* \ingroup Tasks
*/
PRIVILEGED_FUNCTION void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );
/**
* task. h
* <pre>void vTaskDelete( TaskHandle_t xTask );</pre>
*
* INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Remove a task from the RTOS real time kernel's management. The task being
* deleted will be removed from all ready, blocked, suspended and event lists.
*
* NOTE: The idle task is responsible for freeing the kernel allocated
* memory from tasks that have been deleted. It is therefore important that
* the idle task is not starved of microcontroller processing time if your
* application makes any calls to vTaskDelete (). Memory allocated by the
* task code is not automatically freed, and should be freed before the task
* is deleted.
*
* See the demo application file death.c for sample code that utilises
* vTaskDelete ().
*
* @param xTask The handle of the task to be deleted. Passing NULL will
* cause the calling task to be deleted.
*
* Example usage:
<pre>
void vOtherFunction( void )
{
TaskHandle_t xHandle;
// Create the task, storing the handle.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
// Use the handle to delete the task.
vTaskDelete( xHandle );
}
</pre>
* \defgroup vTaskDelete vTaskDelete
* \ingroup Tasks
*/
PRIVILEGED_FUNCTION void vTaskDelete( TaskHandle_t xTaskToDelete );
/*-----------------------------------------------------------
* TASK CONTROL API
*----------------------------------------------------------*/
/**
* task. h
* <pre>void vTaskDelay( const TickType_t xTicksToDelay );</pre>
*
* Delay a task for a given number of ticks. The actual time that the
* task remains blocked depends on the tick rate. The constant
* portTICK_PERIOD_MS can be used to calculate real time from the tick
* rate - with the resolution of one tick period.
*
* INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
*
* vTaskDelay() specifies a time at which the task wishes to unblock relative to
* the time at which vTaskDelay() is called. For example, specifying a block
* period of 100 ticks will cause the task to unblock 100 ticks after
* vTaskDelay() is called. vTaskDelay() does not therefore provide a good method
* of controlling the frequency of a periodic task as the path taken through the
* code, as well as other task and interrupt activity, will effect the frequency
* at which vTaskDelay() gets called and therefore the time at which the task
* next executes. See vTaskDelayUntil() for an alternative API function designed
* to facilitate fixed frequency execution. It does this by specifying an
* absolute time (rather than a relative time) at which the calling task should
* unblock.
*
* @param xTicksToDelay The amount of time, in tick periods, that
* the calling task should block.
*
* Example usage:
void vTaskFunction( void * pvParameters )
{
// Block for 500ms.
const TickType_t xDelay = 500 / portTICK_PERIOD_MS;
for( ;; )
{
// Simply toggle the LED every 500ms, blocking between each toggle.
vToggleLED();
vTaskDelay( xDelay );
}
}
* \defgroup vTaskDelay vTaskDelay
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskDelay( const TickType_t xTicksToDelay );
/**
* task. h
* <pre>void vTaskDelayUntil( TickType_t *pxPreviousWakeTime, const TickType_t xTimeIncrement );</pre>
*
* INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Delay a task until a specified time. This function can be used by periodic
* tasks to ensure a constant execution frequency.
*
* This function differs from vTaskDelay () in one important aspect: vTaskDelay () will
* cause a task to block for the specified number of ticks from the time vTaskDelay () is
* called. It is therefore difficult to use vTaskDelay () by itself to generate a fixed
* execution frequency as the time between a task starting to execute and that task
* calling vTaskDelay () may not be fixed [the task may take a different path though the
* code between calls, or may get interrupted or preempted a different number of times
* each time it executes].
*
* Whereas vTaskDelay () specifies a wake time relative to the time at which the function
* is called, vTaskDelayUntil () specifies the absolute (exact) time at which it wishes to
* unblock.
*
* The constant portTICK_PERIOD_MS can be used to calculate real time from the tick
* rate - with the resolution of one tick period.
*
* @param pxPreviousWakeTime Pointer to a variable that holds the time at which the
* task was last unblocked. The variable must be initialised with the current time
* prior to its first use (see the example below). Following this the variable is
* automatically updated within vTaskDelayUntil ().
*
* @param xTimeIncrement The cycle time period. The task will be unblocked at
* time *pxPreviousWakeTime + xTimeIncrement. Calling vTaskDelayUntil with the
* same xTimeIncrement parameter value will cause the task to execute with
* a fixed interface period.
*
* Example usage:
<pre>
// Perform an action every 10 ticks.
void vTaskFunction( void * pvParameters )
{
TickType_t xLastWakeTime;
const TickType_t xFrequency = 10;
// Initialise the xLastWakeTime variable with the current time.
xLastWakeTime = xTaskGetTickCount ();
for( ;; )
{
// Wait for the next cycle.
vTaskDelayUntil( &xLastWakeTime, xFrequency );
// Perform action here.
}
}
</pre>
* \defgroup vTaskDelayUntil vTaskDelayUntil
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement );
/**
* task. h
* <pre>BaseType_t xTaskAbortDelay( TaskHandle_t xTask );</pre>
*
* INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this
* function to be available.
*
* A task will enter the Blocked state when it is waiting for an event. The
* event it is waiting for can be a temporal event (waiting for a time), such
* as when vTaskDelay() is called, or an event on an object, such as when
* xQueueReceive() or ulTaskNotifyTake() is called. If the handle of a task
* that is in the Blocked state is used in a call to xTaskAbortDelay() then the
* task will leave the Blocked state, and return from whichever function call
* placed the task into the Blocked state.
*
* @param xTask The handle of the task to remove from the Blocked state.
*
* @return If the task referenced by xTask was not in the Blocked state then
* pdFAIL is returned. Otherwise pdPASS is returned.
*
* \defgroup xTaskAbortDelay xTaskAbortDelay
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION BaseType_t xTaskAbortDelay( TaskHandle_t xTask );
/**
* task. h
* <pre>UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask );</pre>
*
* INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Obtain the priority of any task.
*
* @param xTask Handle of the task to be queried. Passing a NULL
* handle results in the priority of the calling task being returned.
*
* @return The priority of xTask.
*
* Example usage:
<pre>
void vAFunction( void )
{
TaskHandle_t xHandle;
// Create a task, storing the handle.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
// ...
// Use the handle to obtain the priority of the created task.
// It was created with tskIDLE_PRIORITY, but may have changed
// it itself.
if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
{
// The task has changed it's priority.
}
// ...
// Is our priority higher than the created task?
if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
{
// Our priority (obtained using NULL handle) is higher.
}
}
</pre>
* \defgroup uxTaskPriorityGet uxTaskPriorityGet
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask );
/**
* task. h
* <pre>UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask );</pre>
*
* A version of uxTaskPriorityGet() that can be used from an ISR.
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask );
/**
* task. h
* <pre>eTaskState eTaskGetState( TaskHandle_t xTask );</pre>
*
* INCLUDE_eTaskGetState must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Obtain the state of any task. States are encoded by the eTaskState
* enumerated type.
*
* @param xTask Handle of the task to be queried.
*
* @return The state of xTask at the time the function was called. Note the
* state of the task might change between the function being called, and the
* functions return value being tested by the calling task.
*/
PRIVILEGED_FUNCTION eTaskState eTaskGetState( TaskHandle_t xTask );
/**
* task. h
* <pre>void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState );</pre>
*
* configUSE_TRACE_FACILITY must be defined as 1 for this function to be
* available. See the configuration section for more information.
*
* Populates a TaskStatus_t structure with information about a task.
*
* @param xTask Handle of the task being queried. If xTask is NULL then
* information will be returned about the calling task.
*
* @param pxTaskStatus A pointer to the TaskStatus_t structure that will be
* filled with information about the task referenced by the handle passed using
* the xTask parameter.
*
* @xGetFreeStackSpace The TaskStatus_t structure contains a member to report
* the stack high water mark of the task being queried. Calculating the stack
* high water mark takes a relatively long time, and can make the system
* temporarily unresponsive - so the xGetFreeStackSpace parameter is provided to
* allow the high water mark checking to be skipped. The high watermark value
* will only be written to the TaskStatus_t structure if xGetFreeStackSpace is
* not set to pdFALSE;
*
* @param eState The TaskStatus_t structure contains a member to report the
* state of the task being queried. Obtaining the task state is not as fast as
* a simple assignment - so the eState parameter is provided to allow the state
* information to be omitted from the TaskStatus_t structure. To obtain state
* information then set eState to eInvalid - otherwise the value passed in
* eState will be reported as the task state in the TaskStatus_t structure.
*
* Example usage:
<pre>
void vAFunction( void )
{
TaskHandle_t xHandle;
TaskStatus_t xTaskDetails;
// Obtain the handle of a task from its name.
xHandle = xTaskGetHandle( "Task_Name" );
// Check the handle is not NULL.
configASSERT( xHandle );
// Use the handle to obtain further information about the task.
vTaskGetInfo( xHandle,
&xTaskDetails,
pdTRUE, // Include the high water mark in xTaskDetails.
eInvalid ); // Include the task state in xTaskDetails.
}
</pre>
* \defgroup vTaskGetInfo vTaskGetInfo
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState );
/**
* task. h
* <pre>void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );</pre>
*
* INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Set the priority of any task.
*
* A context switch will occur before the function returns if the priority
* being set is higher than the currently executing task.
*
* @param xTask Handle to the task for which the priority is being set.
* Passing a NULL handle results in the priority of the calling task being set.
*
* @param uxNewPriority The priority to which the task will be set.
*
* Example usage:
<pre>
void vAFunction( void )
{
TaskHandle_t xHandle;
// Create a task, storing the handle.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
// ...
// Use the handle to raise the priority of the created task.
vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
// ...
// Use a NULL handle to raise our priority to the same value.
vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
}
</pre>
* \defgroup vTaskPrioritySet vTaskPrioritySet
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );
/**
* task. h
* <pre>void vTaskSuspend( TaskHandle_t xTaskToSuspend );</pre>
*
* INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Suspend any task. When suspended a task will never get any microcontroller
* processing time, no matter what its priority.
*
* Calls to vTaskSuspend are not accumulative -
* i.e. calling vTaskSuspend () twice on the same task still only requires one
* call to vTaskResume () to ready the suspended task.
*
* @param xTaskToSuspend Handle to the task being suspended. Passing a NULL
* handle will cause the calling task to be suspended.
*
* Example usage:
<pre>
void vAFunction( void )
{
TaskHandle_t xHandle;
// Create a task, storing the handle.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
// ...
// Use the handle to suspend the created task.
vTaskSuspend( xHandle );
// ...
// The created task will not run during this period, unless
// another task calls vTaskResume( xHandle ).
//...
// Suspend ourselves.
vTaskSuspend( NULL );
// We cannot get here unless another task calls vTaskResume
// with our handle as the parameter.
}
</pre>
* \defgroup vTaskSuspend vTaskSuspend
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskSuspend( TaskHandle_t xTaskToSuspend );
/**
* task. h
* <pre>void vTaskResume( TaskHandle_t xTaskToResume );</pre>
*
* INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
* See the configuration section for more information.
*
* Resumes a suspended task.
*
* A task that has been suspended by one or more calls to vTaskSuspend ()
* will be made available for running again by a single call to
* vTaskResume ().
*
* @param xTaskToResume Handle to the task being readied.
*
* Example usage:
<pre>
void vAFunction( void )
{
TaskHandle_t xHandle;
// Create a task, storing the handle.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
// ...
// Use the handle to suspend the created task.
vTaskSuspend( xHandle );
// ...
// The created task will not run during this period, unless
// another task calls vTaskResume( xHandle ).
//...
// Resume the suspended task ourselves.
vTaskResume( xHandle );
// The created task will once again get microcontroller processing
// time in accordance with its priority within the system.
}
</pre>
* \defgroup vTaskResume vTaskResume
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION void vTaskResume( TaskHandle_t xTaskToResume );
/**
* task. h
* <pre>void xTaskResumeFromISR( TaskHandle_t xTaskToResume );</pre>
*
* INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
* available. See the configuration section for more information.
*
* An implementation of vTaskResume() that can be called from within an ISR.
*
* A task that has been suspended by one or more calls to vTaskSuspend ()
* will be made available for running again by a single call to
* xTaskResumeFromISR ().
*
* xTaskResumeFromISR() should not be used to synchronise a task with an
* interrupt if there is a chance that the interrupt could arrive prior to the
* task being suspended - as this can lead to interrupts being missed. Use of a
* semaphore as a synchronisation mechanism would avoid this eventuality.
*
* @param xTaskToResume Handle to the task being readied.
*
* @return pdTRUE if resuming the task should result in a context switch,
* otherwise pdFALSE. This is used by the ISR to determine if a context switch
* may be required following the ISR.
*
* \defgroup vTaskResumeFromISR vTaskResumeFromISR
* \ingroup TaskCtrl
*/
PRIVILEGED_FUNCTION BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume );
/*-----------------------------------------------------------
* SCHEDULER CONTROL
*----------------------------------------------------------*/
/**
* task. h
* <pre>void vTaskStartScheduler( void );</pre>
*
* Starts the real time kernel tick processing. After calling the kernel
* has control over which tasks are executed and when.
*
* See the demo application file main.c for an example of creating
* tasks and starting the kernel.
*
* Example usage:
<pre>
void vAFunction( void )
{
// Create at least one task before starting the kernel.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
// Start the real time kernel with preemption.
vTaskStartScheduler ();
// Will not get here unless a task calls vTaskEndScheduler ()
}
</pre>
*
* \defgroup vTaskStartScheduler vTaskStartScheduler
* \ingroup SchedulerControl
*/
PRIVILEGED_FUNCTION void vTaskStartScheduler( void );
/**
* task. h
* <pre>void vTaskEndScheduler( void );</pre>
*
* NOTE: At the time of writing only the x86 real mode port, which runs on a PC
* in place of DOS, implements this function.
*
* Stops the real time kernel tick. All created tasks will be automatically
* deleted and multitasking (either preemptive or cooperative) will
* stop. Execution then resumes from the point where vTaskStartScheduler ()
* was called, as if vTaskStartScheduler () had just returned.
*
* See the demo application file main. c in the demo/PC directory for an
* example that uses vTaskEndScheduler ().
*
* vTaskEndScheduler () requires an exit function to be defined within the
* portable layer (see vPortEndScheduler () in port. c for the PC port). This
* performs hardware specific operations such as stopping the kernel tick.
*
* vTaskEndScheduler () will cause all of the resources allocated by the
* kernel to be freed - but will not free resources allocated by application
* tasks.
*
* Example usage:
<pre>
void vTaskCode( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
// At some point we want to end the real time kernel processing
// so call ...
vTaskEndScheduler ();
}
}
void vAFunction( void )
{
// Create at least one task before starting the kernel.
xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
// Start the real time kernel with preemption.
vTaskStartScheduler ();
// Will only get here when the vTaskCode () task has called
// vTaskEndScheduler (). When we get here we are back to single task
// execution.
}
</pre>
*
* \defgroup vTaskEndScheduler vTaskEndScheduler
* \ingroup SchedulerControl
*/
PRIVILEGED_FUNCTION void vTaskEndScheduler( void );
/**
* task. h
* <pre>void vTaskSuspendAll( void );</pre>
*
* Suspends the scheduler without disabling interrupts. Context switches will
* not occur while the scheduler is suspended.
*
* After calling vTaskSuspendAll () the calling task will continue to execute
* without risk of being swapped out until a call to xTaskResumeAll () has been
* made.
*
* API functions that have the potential to cause a context switch (for example,
* vTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
* is suspended.
*
* Example usage:
<pre>
void vTask1( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
// ...
// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.
// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();
// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the kernel
// tick count will be maintained.
// ...
// The operation is complete. Restart the kernel.
xTaskResumeAll ();
}
}
</pre>
* \defgroup vTaskSuspendAll vTaskSuspendAll
* \ingroup SchedulerControl
*/
PRIVILEGED_FUNCTION void vTaskSuspendAll( void );
/**
* task. h
* <pre>BaseType_t xTaskResumeAll( void );</pre>
*
* Resumes scheduler activity after it was suspended by a call to
* vTaskSuspendAll().
*
* xTaskResumeAll() only resumes the scheduler. It does not unsuspend tasks
* that were previously suspended by a call to vTaskSuspend().
*
* @return If resuming the scheduler caused a context switch then pdTRUE is
* returned, otherwise pdFALSE is returned.
*
* Example usage:
<pre>
void vTask1( void * pvParameters )
{
for( ;; )
{
// Task code goes here.
// ...
// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.
// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();
// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the real
// time kernel tick count will be maintained.
// ...
// The operation is complete. Restart the kernel. We want to force
// a context switch - but there is no point if resuming the scheduler
// caused a context switch already.
if( !xTaskResumeAll () )
{
taskYIELD ();
}
}
}
</pre>
* \defgroup xTaskResumeAll xTaskResumeAll
* \ingroup SchedulerControl
*/
PRIVILEGED_FUNCTION BaseType_t xTaskResumeAll( void );
/*-----------------------------------------------------------
* TASK UTILITIES
*----------------------------------------------------------*/
/**
* task. h
* <PRE>TickType_t xTaskGetTickCount( void );</PRE>
*
* @return The count of ticks since vTaskStartScheduler was called.
*
* \defgroup xTaskGetTickCount xTaskGetTickCount
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION TickType_t xTaskGetTickCount( void );
/**
* task. h
* <PRE>TickType_t xTaskGetTickCountFromISR( void );</PRE>
*
* @return The count of ticks since vTaskStartScheduler was called.
*
* This is a version of xTaskGetTickCount() that is safe to be called from an
* ISR - provided that TickType_t is the natural word size of the
* microcontroller being used or interrupt nesting is either not supported or
* not being used.
*
* \defgroup xTaskGetTickCountFromISR xTaskGetTickCountFromISR
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION TickType_t xTaskGetTickCountFromISR( void );
/**
* task. h
* <PRE>uint16_t uxTaskGetNumberOfTasks( void );</PRE>
*
* @return The number of tasks that the real time kernel is currently managing.
* This includes all ready, blocked and suspended tasks. A task that
* has been deleted but not yet freed by the idle task will also be
* included in the count.
*
* \defgroup uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskGetNumberOfTasks( void );
/**
* task. h
* <PRE>char *pcTaskGetName( TaskHandle_t xTaskToQuery );</PRE>
*
* @return The text (human readable) name of the task referenced by the handle
* xTaskToQuery. A task can query its own name by either passing in its own
* handle, or by setting xTaskToQuery to NULL.
*
* \defgroup pcTaskGetName pcTaskGetName
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION char *pcTaskGetName( TaskHandle_t xTaskToQuery ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* task. h
* <PRE>TaskHandle_t xTaskGetHandle( const char *pcNameToQuery );</PRE>
*
* NOTE: This function takes a relatively long time to complete and should be
* used sparingly.
*
* @return The handle of the task that has the human readable name pcNameToQuery.
* NULL is returned if no matching name is found. INCLUDE_xTaskGetHandle
* must be set to 1 in FreeRTOSConfig.h for pcTaskGetHandle() to be available.
*
* \defgroup pcTaskGetHandle pcTaskGetHandle
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* task.h
* <PRE>UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );</PRE>
*
* INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
* this function to be available.
*
* Returns the high water mark of the stack associated with xTask. That is,
* the minimum free stack space there has been (in words, so on a 32 bit machine
* a value of 1 means 4 bytes) since the task started. The smaller the returned
* number the closer the task has come to overflowing its stack.
*
* @param xTask Handle of the task associated with the stack to be checked.
* Set xTask to NULL to check the stack of the calling task.
*
* @return The smallest amount of free stack space there has been (in words, so
* actual spaces on the stack rather than bytes) since the task referenced by
* xTask was created.
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );
/* When using trace macros it is sometimes necessary to include task.h before
FreeRTOS.h. When this is done TaskHookFunction_t will not yet have been defined,
so the following two prototypes will cause a compilation error. This can be
fixed by simply guarding against the inclusion of these two prototypes unless
they are explicitly required by the configUSE_APPLICATION_TASK_TAG configuration
constant. */
#ifdef configUSE_APPLICATION_TASK_TAG
#if configUSE_APPLICATION_TASK_TAG == 1
/**
* task.h
* <pre>void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction );</pre>
*
* Sets pxHookFunction to be the task hook function used by the task xTask.
* Passing xTask as NULL has the effect of setting the calling tasks hook
* function.
*/
PRIVILEGED_FUNCTION void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction );
/**
* task.h
* <pre>void xTaskGetApplicationTaskTag( TaskHandle_t xTask );</pre>
*
* Returns the pxHookFunction value assigned to the task xTask.
*/
PRIVILEGED_FUNCTION TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask );
#endif /* configUSE_APPLICATION_TASK_TAG ==1 */
#endif /* ifdef configUSE_APPLICATION_TASK_TAG */
#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
/* Each task contains an array of pointers that is dimensioned by the
configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The
kernel does not use the pointers itself, so the application writer can use
the pointers for any purpose they wish. The following two functions are
used to set and query a pointer respectively. */
PRIVILEGED_FUNCTION void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue );
PRIVILEGED_FUNCTION void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex );
#endif
/**
* task.h
* <pre>BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter );</pre>
*
* Calls the hook function associated with xTask. Passing xTask as NULL has
* the effect of calling the Running tasks (the calling task) hook function.
*
* pvParameter is passed to the hook function for the task to interpret as it
* wants. The return value is the value returned by the task hook function
* registered by the user.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter );
/**
* xTaskGetIdleTaskHandle() is only available if
* INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
*
* Simply returns the handle of the idle task. It is not valid to call
* xTaskGetIdleTaskHandle() before the scheduler has been started.
*/
PRIVILEGED_FUNCTION TaskHandle_t xTaskGetIdleTaskHandle( void );
/**
* configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for
* uxTaskGetSystemState() to be available.
*
* uxTaskGetSystemState() populates an TaskStatus_t structure for each task in
* the system. TaskStatus_t structures contain, among other things, members
* for the task handle, task name, task priority, task state, and total amount
* of run time consumed by the task. See the TaskStatus_t structure
* definition in this file for the full member list.
*
* NOTE: This function is intended for debugging use only as its use results in
* the scheduler remaining suspended for an extended period.
*
* @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures.
* The array must contain at least one TaskStatus_t structure for each task
* that is under the control of the RTOS. The number of tasks under the control
* of the RTOS can be determined using the uxTaskGetNumberOfTasks() API function.
*
* @param uxArraySize The size of the array pointed to by the pxTaskStatusArray
* parameter. The size is specified as the number of indexes in the array, or
* the number of TaskStatus_t structures contained in the array, not by the
* number of bytes in the array.
*
* @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in
* FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the
* total run time (as defined by the run time stats clock, see
* http://www.freertos.org/rtos-run-time-stats.html) since the target booted.
* pulTotalRunTime can be set to NULL to omit the total run time information.
*
* @return The number of TaskStatus_t structures that were populated by
* uxTaskGetSystemState(). This should equal the number returned by the
* uxTaskGetNumberOfTasks() API function, but will be zero if the value passed
* in the uxArraySize parameter was too small.
*
* Example usage:
<pre>
// This example demonstrates how a human readable table of run time stats
// information is generated from raw data provided by uxTaskGetSystemState().
// The human readable table is written to pcWriteBuffer
void vTaskGetRunTimeStats( char *pcWriteBuffer )
{
TaskStatus_t *pxTaskStatusArray;
volatile UBaseType_t uxArraySize, x;
uint32_t ulTotalRunTime, ulStatsAsPercentage;
// Make sure the write buffer does not contain a string.
*pcWriteBuffer = 0x00;
// Take a snapshot of the number of tasks in case it changes while this
// function is executing.
uxArraySize = uxTaskGetNumberOfTasks();
// Allocate a TaskStatus_t structure for each task. An array could be
// allocated statically at compile time.
pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t ) );
if( pxTaskStatusArray != NULL )
{
// Generate raw status information about each task.
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalRunTime );
// For percentage calculations.
ulTotalRunTime /= 100UL;
// Avoid divide by zero errors.
if( ulTotalRunTime > 0 )
{
// For each populated position in the pxTaskStatusArray array,
// format the raw data as human readable ASCII data
for( x = 0; x < uxArraySize; x++ )
{
// What percentage of the total run time has the task used?
// This will always be rounded down to the nearest integer.
// ulTotalRunTimeDiv100 has already been divided by 100.
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalRunTime;
if( ulStatsAsPercentage > 0UL )
{
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
}
else
{
// If the percentage is zero here then the task has
// consumed less than 1% of the total run time.
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
}
pcWriteBuffer += strlen( ( char * ) pcWriteBuffer );
}
}
// The array is no longer needed, free the memory it consumes.
vPortFree( pxTaskStatusArray );
}
}
</pre>
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime );
/**
* task. h
* <PRE>void vTaskList( char *pcWriteBuffer );</PRE>
*
* configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
* both be defined as 1 for this function to be available. See the
* configuration section of the FreeRTOS.org website for more information.
*
* NOTE 1: This function will disable interrupts for its duration. It is
* not intended for normal application runtime use but as a debug aid.
*
* Lists all the current tasks, along with their current state and stack
* usage high water mark.
*
* Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
* suspended ('S').
*
* PLEASE NOTE:
*
* This function is provided for convenience only, and is used by many of the
* demo applications. Do not consider it to be part of the scheduler.
*
* vTaskList() calls uxTaskGetSystemState(), then formats part of the
* uxTaskGetSystemState() output into a human readable table that displays task
* names, states and stack usage.
*
* vTaskList() has a dependency on the sprintf() C library function that might
* bloat the code size, use a lot of stack, and provide different results on
* different platforms. An alternative, tiny, third party, and limited
* functionality implementation of sprintf() is provided in many of the
* FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
* printf-stdarg.c does not provide a full snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState()
* directly to get access to raw stats data, rather than indirectly through a
* call to vTaskList().
*
* @param pcWriteBuffer A buffer into which the above mentioned details
* will be written, in ASCII form. This buffer is assumed to be large
* enough to contain the generated report. Approximately 40 bytes per
* task should be sufficient.
*
* \defgroup vTaskList vTaskList
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION void vTaskList( char * pcWriteBuffer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* task. h
* <PRE>void vTaskGetRunTimeStats( char *pcWriteBuffer );</PRE>
*
* configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
* must both be defined as 1 for this function to be available. The application
* must also then provide definitions for
* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
* to configure a peripheral timer/counter and return the timers current count
* value respectively. The counter should be at least 10 times the frequency of
* the tick count.
*
* NOTE 1: This function will disable interrupts for its duration. It is
* not intended for normal application runtime use but as a debug aid.
*
* Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
* accumulated execution time being stored for each task. The resolution
* of the accumulated time value depends on the frequency of the timer
* configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
* Calling vTaskGetRunTimeStats() writes the total execution time of each
* task into a buffer, both as an absolute count value and as a percentage
* of the total system execution time.
*
* NOTE 2:
*
* This function is provided for convenience only, and is used by many of the
* demo applications. Do not consider it to be part of the scheduler.
*
* vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the
* uxTaskGetSystemState() output into a human readable table that displays the
* amount of time each task has spent in the Running state in both absolute and
* percentage terms.
*
* vTaskGetRunTimeStats() has a dependency on the sprintf() C library function
* that might bloat the code size, use a lot of stack, and provide different
* results on different platforms. An alternative, tiny, third party, and
* limited functionality implementation of sprintf() is provided in many of the
* FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
* printf-stdarg.c does not provide a full snprintf() implementation!).
*
* It is recommended that production systems call uxTaskGetSystemState() directly
* to get access to raw stats data, rather than indirectly through a call to
* vTaskGetRunTimeStats().
*
* @param pcWriteBuffer A buffer into which the execution times will be
* written, in ASCII form. This buffer is assumed to be large enough to
* contain the generated report. Approximately 40 bytes per task should
* be sufficient.
*
* \defgroup vTaskGetRunTimeStats vTaskGetRunTimeStats
* \ingroup TaskUtils
*/
PRIVILEGED_FUNCTION void vTaskGetRunTimeStats( char *pcWriteBuffer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* task. h
* <PRE>BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );</PRE>
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
* function to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* A notification sent to a task will remain pending until it is cleared by the
* task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
* already in the Blocked state to wait for a notification when the notification
* arrives then the task will automatically be removed from the Blocked state
* (unblocked) and the notification cleared.
*
* A task can use xTaskNotifyWait() to [optionally] block to wait for a
* notification to be pending, or ulTaskNotifyTake() to [optionally] block
* to wait for its notification value to have a non-zero value. The task does
* not consume any CPU time while it is in the Blocked state.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
*
* @param xTaskToNotify The handle of the task being notified. The handle to a
* task can be returned from the xTaskCreate() API function used to create the
* task, and the handle of the currently running task can be obtained by calling
* xTaskGetCurrentTaskHandle().
*
* @param ulValue Data that can be sent with the notification. How the data is
* used depends on the value of the eAction parameter.
*
* @param eAction Specifies how the notification updates the task's notification
* value, if at all. Valid values for eAction are as follows:
*
* eSetBits -
* The task's notification value is bitwise ORed with ulValue. xTaskNofify()
* always returns pdPASS in this case.
*
* eIncrement -
* The task's notification value is incremented. ulValue is not used and
* xTaskNotify() always returns pdPASS in this case.
*
* eSetValueWithOverwrite -
* The task's notification value is set to the value of ulValue, even if the
* task being notified had not yet processed the previous notification (the
* task already had a notification pending). xTaskNotify() always returns
* pdPASS in this case.
*
* eSetValueWithoutOverwrite -
* If the task being notified did not already have a notification pending then
* the task's notification value is set to ulValue and xTaskNotify() will
* return pdPASS. If the task being notified already had a notification
* pending then no action is performed and pdFAIL is returned.
*
* eNoAction -
* The task receives a notification without its notification value being
* updated. ulValue is not used and xTaskNotify() always returns pdPASS in
* this case.
*
* pulPreviousNotificationValue -
* Can be used to pass out the subject task's notification value before any
* bits are modified by the notify function.
*
* @return Dependent on the value of eAction. See the description of the
* eAction parameter.
*
* \defgroup xTaskNotify xTaskNotify
* \ingroup TaskNotifications
*/
PRIVILEGED_FUNCTION BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue );
#define xTaskNotify( xTaskToNotify, ulValue, eAction ) xTaskGenericNotify( ( xTaskToNotify ), ( ulValue ), ( eAction ), NULL )
#define xTaskNotifyAndQuery( xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue ) xTaskGenericNotify( ( xTaskToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotifyValue ) )
/**
* task. h
* <PRE>BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );</PRE>
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
* function to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* A version of xTaskNotify() that can be used from an interrupt service routine
* (ISR).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* A notification sent to a task will remain pending until it is cleared by the
* task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
* already in the Blocked state to wait for a notification when the notification
* arrives then the task will automatically be removed from the Blocked state
* (unblocked) and the notification cleared.
*
* A task can use xTaskNotifyWait() to [optionally] block to wait for a
* notification to be pending, or ulTaskNotifyTake() to [optionally] block
* to wait for its notification value to have a non-zero value. The task does
* not consume any CPU time while it is in the Blocked state.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
*
* @param xTaskToNotify The handle of the task being notified. The handle to a
* task can be returned from the xTaskCreate() API function used to create the
* task, and the handle of the currently running task can be obtained by calling
* xTaskGetCurrentTaskHandle().
*
* @param ulValue Data that can be sent with the notification. How the data is
* used depends on the value of the eAction parameter.
*
* @param eAction Specifies how the notification updates the task's notification
* value, if at all. Valid values for eAction are as follows:
*
* eSetBits -
* The task's notification value is bitwise ORed with ulValue. xTaskNofify()
* always returns pdPASS in this case.
*
* eIncrement -
* The task's notification value is incremented. ulValue is not used and
* xTaskNotify() always returns pdPASS in this case.
*
* eSetValueWithOverwrite -
* The task's notification value is set to the value of ulValue, even if the
* task being notified had not yet processed the previous notification (the
* task already had a notification pending). xTaskNotify() always returns
* pdPASS in this case.
*
* eSetValueWithoutOverwrite -
* If the task being notified did not already have a notification pending then
* the task's notification value is set to ulValue and xTaskNotify() will
* return pdPASS. If the task being notified already had a notification
* pending then no action is performed and pdFAIL is returned.
*
* eNoAction -
* The task receives a notification without its notification value being
* updated. ulValue is not used and xTaskNotify() always returns pdPASS in
* this case.
*
* @param pxHigherPriorityTaskWoken xTaskNotifyFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
* task to which the notification was sent to leave the Blocked state, and the
* unblocked task has a priority higher than the currently running task. If
* xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should
* be requested before the interrupt is exited. How a context switch is
* requested from an ISR is dependent on the port - see the documentation page
* for the port in use.
*
* @return Dependent on the value of eAction. See the description of the
* eAction parameter.
*
* \defgroup xTaskNotify xTaskNotify
* \ingroup TaskNotifications
*/
PRIVILEGED_FUNCTION BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken );
#define xTaskNotifyFromISR( xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken ) xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( ulValue ), ( eAction ), NULL, ( pxHigherPriorityTaskWoken ) )
#define xTaskNotifyAndQueryFromISR( xTaskToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ) xTaskGenericNotifyFromISR( ( xTaskToNotify ), ( ulValue ), ( eAction ), ( pulPreviousNotificationValue ), ( pxHigherPriorityTaskWoken ) )
/**
* task. h
* <PRE>BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );</pre>
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
* function to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* A notification sent to a task will remain pending until it is cleared by the
* task calling xTaskNotifyWait() or ulTaskNotifyTake(). If the task was
* already in the Blocked state to wait for a notification when the notification
* arrives then the task will automatically be removed from the Blocked state
* (unblocked) and the notification cleared.
*
* A task can use xTaskNotifyWait() to [optionally] block to wait for a
* notification to be pending, or ulTaskNotifyTake() to [optionally] block
* to wait for its notification value to have a non-zero value. The task does
* not consume any CPU time while it is in the Blocked state.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
*
* @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value
* will be cleared in the calling task's notification value before the task
* checks to see if any notifications are pending, and optionally blocks if no
* notifications are pending. Setting ulBitsToClearOnEntry to ULONG_MAX (if
* limits.h is included) or 0xffffffffUL (if limits.h is not included) will have
* the effect of resetting the task's notification value to 0. Setting
* ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged.
*
* @param ulBitsToClearOnExit If a notification is pending or received before
* the calling task exits the xTaskNotifyWait() function then the task's
* notification value (see the xTaskNotify() API function) is passed out using
* the pulNotificationValue parameter. Then any bits that are set in
* ulBitsToClearOnExit will be cleared in the task's notification value (note
* *pulNotificationValue is set before any bits are cleared). Setting
* ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL
* (if limits.h is not included) will have the effect of resetting the task's
* notification value to 0 before the function exits. Setting
* ulBitsToClearOnExit to 0 will leave the task's notification value unchanged
* when the function exits (in which case the value passed out in
* pulNotificationValue will match the task's notification value).
*
* @param pulNotificationValue Used to pass the task's notification value out
* of the function. Note the value passed out will not be effected by the
* clearing of any bits caused by ulBitsToClearOnExit being non-zero.
*
* @param xTicksToWait The maximum amount of time that the task should wait in
* the Blocked state for a notification to be received, should a notification
* not already be pending when xTaskNotifyWait() was called. The task
* will not consume any processing time while it is in the Blocked state. This
* is specified in kernel ticks, the macro pdMS_TO_TICSK( value_in_ms ) can be
* used to convert a time specified in milliseconds to a time specified in
* ticks.
*
* @return If a notification was received (including notifications that were
* already pending when xTaskNotifyWait was called) then pdPASS is
* returned. Otherwise pdFAIL is returned.
*
* \defgroup xTaskNotifyWait xTaskNotifyWait
* \ingroup TaskNotifications
*/
PRIVILEGED_FUNCTION BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );
/**
* task. h
* <PRE>BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );</PRE>
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
* to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* xTaskNotifyGive() is a helper macro intended for use when task notifications
* are used as light weight and faster binary or counting semaphore equivalents.
* Actual FreeRTOS semaphores are given using the xSemaphoreGive() API function,
* the equivalent action that instead uses a task notification is
* xTaskNotifyGive().
*
* When task notifications are being used as a binary or counting semaphore
* equivalent then the task being notified should wait for the notification
* using the ulTaskNotificationTake() API function rather than the
* xTaskNotifyWait() API function.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
*
* @param xTaskToNotify The handle of the task being notified. The handle to a
* task can be returned from the xTaskCreate() API function used to create the
* task, and the handle of the currently running task can be obtained by calling
* xTaskGetCurrentTaskHandle().
*
* @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the
* eAction parameter set to eIncrement - so pdPASS is always returned.
*
* \defgroup xTaskNotifyGive xTaskNotifyGive
* \ingroup TaskNotifications
*/
#define xTaskNotifyGive( xTaskToNotify ) xTaskGenericNotify( ( xTaskToNotify ), ( 0 ), eIncrement, NULL )
/**
* task. h
* <PRE>void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t *pxHigherPriorityTaskWoken );
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
* to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* A version of xTaskNotifyGive() that can be called from an interrupt service
* routine (ISR).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* vTaskNotifyGiveFromISR() is intended for use when task notifications are
* used as light weight and faster binary or counting semaphore equivalents.
* Actual FreeRTOS semaphores are given from an ISR using the
* xSemaphoreGiveFromISR() API function, the equivalent action that instead uses
* a task notification is vTaskNotifyGiveFromISR().
*
* When task notifications are being used as a binary or counting semaphore
* equivalent then the task being notified should wait for the notification
* using the ulTaskNotificationTake() API function rather than the
* xTaskNotifyWait() API function.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
*
* @param xTaskToNotify The handle of the task being notified. The handle to a
* task can be returned from the xTaskCreate() API function used to create the
* task, and the handle of the currently running task can be obtained by calling
* xTaskGetCurrentTaskHandle().
*
* @param pxHigherPriorityTaskWoken vTaskNotifyGiveFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
* task to which the notification was sent to leave the Blocked state, and the
* unblocked task has a priority higher than the currently running task. If
* vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch
* should be requested before the interrupt is exited. How a context switch is
* requested from an ISR is dependent on the port - see the documentation page
* for the port in use.
*
* \defgroup xTaskNotifyWait xTaskNotifyWait
* \ingroup TaskNotifications
*/
PRIVILEGED_FUNCTION void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken );
/**
* task. h
* <PRE>uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );</pre>
*
* configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
* function to be available.
*
* When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
* "notification value", which is a 32-bit unsigned integer (uint32_t).
*
* Events can be sent to a task using an intermediary object. Examples of such
* objects are queues, semaphores, mutexes and event groups. Task notifications
* are a method of sending an event directly to a task without the need for such
* an intermediary object.
*
* A notification sent to a task can optionally perform an action, such as
* update, overwrite or increment the task's notification value. In that way
* task notifications can be used to send data to a task, or be used as light
* weight and fast binary or counting semaphores.
*
* ulTaskNotifyTake() is intended for use when a task notification is used as a
* faster and lighter weight binary or counting semaphore alternative. Actual
* FreeRTOS semaphores are taken using the xSemaphoreTake() API function, the
* equivalent action that instead uses a task notification is
* ulTaskNotifyTake().
*
* When a task is using its notification value as a binary or counting semaphore
* other tasks should send notifications to it using the xTaskNotifyGive()
* macro, or xTaskNotify() function with the eAction parameter set to
* eIncrement.
*
* ulTaskNotifyTake() can either clear the task's notification value to
* zero on exit, in which case the notification value acts like a binary
* semaphore, or decrement the task's notification value on exit, in which case
* the notification value acts like a counting semaphore.
*
* A task can use ulTaskNotifyTake() to [optionally] block to wait for a
* the task's notification value to be non-zero. The task does not consume any
* CPU time while it is in the Blocked state.
*
* Where as xTaskNotifyWait() will return when a notification is pending,
* ulTaskNotifyTake() will return when the task's notification value is
* not zero.
*
* See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
*
* @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's
* notification value is decremented when the function exits. In this way the
* notification value acts like a counting semaphore. If xClearCountOnExit is
* not pdFALSE then the task's notification value is cleared to zero when the
* function exits. In this way the notification value acts like a binary
* semaphore.
*
* @param xTicksToWait The maximum amount of time that the task should wait in
* the Blocked state for the task's notification value to be greater than zero,
* should the count not already be greater than zero when
* ulTaskNotifyTake() was called. The task will not consume any processing
* time while it is in the Blocked state. This is specified in kernel ticks,
* the macro pdMS_TO_TICSK( value_in_ms ) can be used to convert a time
* specified in milliseconds to a time specified in ticks.
*
* @return The task's notification count before it is either cleared to zero or
* decremented (see the xClearCountOnExit parameter).
*
* \defgroup ulTaskNotifyTake ulTaskNotifyTake
* \ingroup TaskNotifications
*/
PRIVILEGED_FUNCTION uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );
/**
* task. h
* <PRE>BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask );</pre>
*
* If the notification state of the task referenced by the handle xTask is
* eNotified, then set the task's notification state to eNotWaitingNotification.
* The task's notification value is not altered. Set xTask to NULL to clear the
* notification state of the calling task.
*
* @return pdTRUE if the task's notification state was set to
* eNotWaitingNotification, otherwise pdFALSE.
* \defgroup xTaskNotifyStateClear xTaskNotifyStateClear
* \ingroup TaskNotifications
*/
BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask );
/*-----------------------------------------------------------
* SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
*----------------------------------------------------------*/
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
* INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
* AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* Called from the real time kernel tick (either preemptive or cooperative),
* this increments the tick count and checks if any tasks that are blocked
* for a finite period required removing from a blocked list and placing on
* a ready list. If a non-zero value is returned then a context switch is
* required because either:
* + A task was removed from a blocked list because its timeout had expired,
* or
* + Time slicing is in use and there is a task of equal priority to the
* currently running task.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskIncrementTick( void );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
*
* Removes the calling task from the ready list and places it both
* on the list of tasks waiting for a particular event, and the
* list of delayed tasks. The task will be removed from both lists
* and replaced on the ready list should either the event occur (and
* there be no higher priority tasks waiting on the same event) or
* the delay period expires.
*
* The 'unordered' version replaces the event list item value with the
* xItemValue value, and inserts the list item at the end of the list.
*
* The 'ordered' version uses the existing event list item value (which is the
* owning tasks priority) to insert the list item into the event list is task
* priority order.
*
* @param pxEventList The list containing tasks that are blocked waiting
* for the event to occur.
*
* @param xItemValue The item value to use for the event list item when the
* event list is not ordered by task priority.
*
* @param xTicksToWait The maximum amount of time that the task should wait
* for the event to occur. This is specified in kernel ticks,the constant
* portTICK_PERIOD_MS can be used to convert kernel ticks into a real time
* period.
*/
PRIVILEGED_FUNCTION void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait );
PRIVILEGED_FUNCTION void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
*
* This function performs nearly the same function as vTaskPlaceOnEventList().
* The difference being that this function does not permit tasks to block
* indefinitely, whereas vTaskPlaceOnEventList() does.
*
*/
PRIVILEGED_FUNCTION void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
* INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
*
* Removes a task from both the specified event list and the list of blocked
* tasks, and places it on a ready queue.
*
* xTaskRemoveFromEventList()/xTaskRemoveFromUnorderedEventList() will be called
* if either an event occurs to unblock a task, or the block timeout period
* expires.
*
* xTaskRemoveFromEventList() is used when the event list is in task priority
* order. It removes the list item from the head of the event list as that will
* have the highest priority owning task of all the tasks on the event list.
* xTaskRemoveFromUnorderedEventList() is used when the event list is not
* ordered and the event list items hold something other than the owning tasks
* priority. In this case the event list item value is updated to the value
* passed in the xItemValue parameter.
*
* @return pdTRUE if the task being removed has a higher priority than the task
* making the call, otherwise pdFALSE.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList );
PRIVILEGED_FUNCTION BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue );
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
* INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
* AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
*
* Sets the pointer to the current TCB to the TCB of the highest priority task
* that is ready to run.
*/
PRIVILEGED_FUNCTION void vTaskSwitchContext( void );
/*
* THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE. THEY ARE USED BY
* THE EVENT BITS MODULE.
*/
PRIVILEGED_FUNCTION TickType_t uxTaskResetEventItemValue( void );
/*
* Return the handle of the calling task.
*/
PRIVILEGED_FUNCTION TaskHandle_t xTaskGetCurrentTaskHandle( void );
/*
* Capture the current time status for future reference.
*/
PRIVILEGED_FUNCTION void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut );
/*
* Compare the time status now with that previously captured to see if the
* timeout has expired.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait );
/*
* Shortcut used by the queue implementation to prevent unnecessary call to
* taskYIELD();
*/
PRIVILEGED_FUNCTION void vTaskMissedYield( void );
/*
* Returns the scheduler state as taskSCHEDULER_RUNNING,
* taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskGetSchedulerState( void );
/*
* Raises the priority of the mutex holder to that of the calling task should
* the mutex holder have a priority less than the calling task.
*/
PRIVILEGED_FUNCTION void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder );
/*
* Set the priority of a task back to its proper priority in the case that it
* inherited a higher priority while it was holding a semaphore.
*/
PRIVILEGED_FUNCTION BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder );
/*
* Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
*/
PRIVILEGED_FUNCTION UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask );
/*
* Set the uxTaskNumber of the task referenced by the xTask parameter to
* uxHandle.
*/
PRIVILEGED_FUNCTION void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle );
/*
* Only available when configUSE_TICKLESS_IDLE is set to 1.
* If tickless mode is being used, or a low power mode is implemented, then
* the tick interrupt will not execute during idle periods. When this is the
* case, the tick count value maintained by the scheduler needs to be kept up
* to date with the actual execution time by being skipped forward by a time
* equal to the idle period.
*/
PRIVILEGED_FUNCTION void vTaskStepTick( const TickType_t xTicksToJump );
/*
* Only avilable when configUSE_TICKLESS_IDLE is set to 1.
* Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
* specific sleep function to determine if it is ok to proceed with the sleep,
* and if it is ok to proceed, if it is ok to sleep indefinitely.
*
* This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only
* called with the scheduler suspended, not from within a critical section. It
* is therefore possible for an interrupt to request a context switch between
* portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being
* entered. eTaskConfirmSleepModeStatus() should be called from a short
* critical section between the timer being stopped and the sleep mode being
* entered to ensure it is ok to proceed into the sleep mode.
*/
PRIVILEGED_FUNCTION eSleepModeStatus eTaskConfirmSleepModeStatus( void );
/*
* For internal use only. Increment the mutex held count when a mutex is
* taken and return the handle of the task that has taken the mutex.
*/
PRIVILEGED_FUNCTION void *pvTaskIncrementMutexHeldCount( void );
#ifdef __cplusplus
}
#endif
#endif /* INC_TASK_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef TIMERS_H
#define TIMERS_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h must appear in source files before include timers.h"
#endif
/*lint -e537 This headers are only multiply included if the application code
happens to also be including task.h. */
#include "task.h"
/*lint +e537 */
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* MACROS AND DEFINITIONS
*----------------------------------------------------------*/
/* IDs for commands that can be sent/received on the timer queue. These are to
be used solely through the macros that make up the public software timer API,
as defined below. The commands that are sent from interrupts must use the
highest numbers as tmrFIRST_FROM_ISR_COMMAND is used to determine if the task
or interrupt version of the queue send function should be used. */
#define tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR ( ( BaseType_t ) -2 )
#define tmrCOMMAND_EXECUTE_CALLBACK ( ( BaseType_t ) -1 )
#define tmrCOMMAND_START_DONT_TRACE ( ( BaseType_t ) 0 )
#define tmrCOMMAND_START ( ( BaseType_t ) 1 )
#define tmrCOMMAND_RESET ( ( BaseType_t ) 2 )
#define tmrCOMMAND_STOP ( ( BaseType_t ) 3 )
#define tmrCOMMAND_CHANGE_PERIOD ( ( BaseType_t ) 4 )
#define tmrCOMMAND_DELETE ( ( BaseType_t ) 5 )
#define tmrFIRST_FROM_ISR_COMMAND ( ( BaseType_t ) 6 )
#define tmrCOMMAND_START_FROM_ISR ( ( BaseType_t ) 6 )
#define tmrCOMMAND_RESET_FROM_ISR ( ( BaseType_t ) 7 )
#define tmrCOMMAND_STOP_FROM_ISR ( ( BaseType_t ) 8 )
#define tmrCOMMAND_CHANGE_PERIOD_FROM_ISR ( ( BaseType_t ) 9 )
/**
* Type by which software timers are referenced. For example, a call to
* xTimerCreate() returns an TimerHandle_t variable that can then be used to
* reference the subject timer in calls to other software timer API functions
* (for example, xTimerStart(), xTimerReset(), etc.).
*/
typedef void * TimerHandle_t;
/*
* Defines the prototype to which timer callback functions must conform.
*/
typedef void (*TimerCallbackFunction_t)( TimerHandle_t xTimer );
/*
* Defines the prototype to which functions used with the
* xTimerPendFunctionCallFromISR() function must conform.
*/
typedef void (*PendedFunction_t)( void *, uint32_t );
/**
* TimerHandle_t xTimerCreate( const char * const pcTimerName,
* TickType_t xTimerPeriodInTicks,
* UBaseType_t uxAutoReload,
* void * pvTimerID,
* TimerCallbackFunction_t pxCallbackFunction );
*
* Creates a new software timer instance, and returns a handle by which the
* created software timer can be referenced.
*
* Internally, within the FreeRTOS implementation, software timers use a block
* of memory, in which the timer data structure is stored. If a software timer
* is created using xTimerCreate() then the required memory is automatically
* dynamically allocated inside the xTimerCreate() function. (see
* http://www.freertos.org/a00111.html). If a software timer is created using
* xTimerCreateStatic() then the application writer must provide the memory that
* will get used by the software timer. xTimerCreateStatic() therefore allows a
* software timer to be created without using any dynamic memory allocation.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
* xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
* xTimerChangePeriodFromISR() API functions can all be used to transition a
* timer into the active state.
*
* @param pcTimerName A text name that is assigned to the timer. This is done
* purely to assist debugging. The kernel itself only ever references a timer
* by its handle, and never by its name.
*
* @param xTimerPeriodInTicks The timer period. The time is defined in tick
* periods so the constant portTICK_PERIOD_MS can be used to convert a time that
* has been specified in milliseconds. For example, if the timer must expire
* after 100 ticks, then xTimerPeriodInTicks should be set to 100.
* Alternatively, if the timer must expire after 500ms, then xPeriod can be set
* to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
* equal to 1000.
*
* @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
* expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
* If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
* enter the dormant state after it expires.
*
* @param pvTimerID An identifier that is assigned to the timer being created.
* Typically this would be used in the timer callback function to identify which
* timer expired when the same callback function is assigned to more than one
* timer.
*
* @param pxCallbackFunction The function to call when the timer expires.
* Callback functions must have the prototype defined by TimerCallbackFunction_t,
* which is "void vCallbackFunction( TimerHandle_t xTimer );".
*
* @return If the timer is successfully created then a handle to the newly
* created timer is returned. If the timer cannot be created (because either
* there is insufficient FreeRTOS heap remaining to allocate the timer
* structures, or the timer period was set to 0) then NULL is returned.
*
* Example usage:
* @verbatim
* #define NUM_TIMERS 5
*
* // An array to hold handles to the created timers.
* TimerHandle_t xTimers[ NUM_TIMERS ];
*
* // An array to hold a count of the number of times each timer expires.
* int32_t lExpireCounters[ NUM_TIMERS ] = { 0 };
*
* // Define a callback function that will be used by multiple timer instances.
* // The callback function does nothing but count the number of times the
* // associated timer expires, and stop the timer once the timer has expired
* // 10 times.
* void vTimerCallback( TimerHandle_t pxTimer )
* {
* int32_t lArrayIndex;
* const int32_t xMaxExpiryCountBeforeStopping = 10;
*
* // Optionally do something if the pxTimer parameter is NULL.
* configASSERT( pxTimer );
*
* // Which timer expired?
* lArrayIndex = ( int32_t ) pvTimerGetTimerID( pxTimer );
*
* // Increment the number of times that pxTimer has expired.
* lExpireCounters[ lArrayIndex ] += 1;
*
* // If the timer has expired 10 times then stop it from running.
* if( lExpireCounters[ lArrayIndex ] == xMaxExpiryCountBeforeStopping )
* {
* // Do not use a block time if calling a timer API function from a
* // timer callback function, as doing so could cause a deadlock!
* xTimerStop( pxTimer, 0 );
* }
* }
*
* void main( void )
* {
* int32_t x;
*
* // Create then start some timers. Starting the timers before the scheduler
* // has been started means the timers will start running immediately that
* // the scheduler starts.
* for( x = 0; x < NUM_TIMERS; x++ )
* {
* xTimers[ x ] = xTimerCreate( "Timer", // Just a text name, not used by the kernel.
* ( 100 * x ), // The timer period in ticks.
* pdTRUE, // The timers will auto-reload themselves when they expire.
* ( void * ) x, // Assign each timer a unique id equal to its array index.
* vTimerCallback // Each timer calls the same callback when it expires.
* );
*
* if( xTimers[ x ] == NULL )
* {
* // The timer was not created.
* }
* else
* {
* // Start the timer. No block time is specified, and even if one was
* // it would be ignored because the scheduler has not yet been
* // started.
* if( xTimerStart( xTimers[ x ], 0 ) != pdPASS )
* {
* // The timer could not be set into the Active state.
* }
* }
* }
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timers running as they have already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
* }
* @endverbatim
*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION TimerHandle_t xTimerCreate( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/**
* TimerHandle_t xTimerCreateStatic(const char * const pcTimerName,
* TickType_t xTimerPeriodInTicks,
* UBaseType_t uxAutoReload,
* void * pvTimerID,
* TimerCallbackFunction_t pxCallbackFunction,
* StaticTimer_t *pxTimerBuffer );
*
* Creates a new software timer instance, and returns a handle by which the
* created software timer can be referenced.
*
* Internally, within the FreeRTOS implementation, software timers use a block
* of memory, in which the timer data structure is stored. If a software timer
* is created using xTimerCreate() then the required memory is automatically
* dynamically allocated inside the xTimerCreate() function. (see
* http://www.freertos.org/a00111.html). If a software timer is created using
* xTimerCreateStatic() then the application writer must provide the memory that
* will get used by the software timer. xTimerCreateStatic() therefore allows a
* software timer to be created without using any dynamic memory allocation.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
* xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
* xTimerChangePeriodFromISR() API functions can all be used to transition a
* timer into the active state.
*
* @param pcTimerName A text name that is assigned to the timer. This is done
* purely to assist debugging. The kernel itself only ever references a timer
* by its handle, and never by its name.
*
* @param xTimerPeriodInTicks The timer period. The time is defined in tick
* periods so the constant portTICK_PERIOD_MS can be used to convert a time that
* has been specified in milliseconds. For example, if the timer must expire
* after 100 ticks, then xTimerPeriodInTicks should be set to 100.
* Alternatively, if the timer must expire after 500ms, then xPeriod can be set
* to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
* equal to 1000.
*
* @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
* expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
* If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
* enter the dormant state after it expires.
*
* @param pvTimerID An identifier that is assigned to the timer being created.
* Typically this would be used in the timer callback function to identify which
* timer expired when the same callback function is assigned to more than one
* timer.
*
* @param pxCallbackFunction The function to call when the timer expires.
* Callback functions must have the prototype defined by TimerCallbackFunction_t,
* which is "void vCallbackFunction( TimerHandle_t xTimer );".
*
* @param pxTimerBuffer Must point to a variable of type StaticTimer_t, which
* will be then be used to hold the software timer's data structures, removing
* the need for the memory to be allocated dynamically.
*
* @return If the timer is created then a handle to the created timer is
* returned. If pxTimerBuffer was NULL then NULL is returned.
*
* Example usage:
* @verbatim
*
* // The buffer used to hold the software timer's data structure.
* static StaticTimer_t xTimerBuffer;
*
* // A variable that will be incremented by the software timer's callback
* // function.
* UBaseType_t uxVariableToIncrement = 0;
*
* // A software timer callback function that increments a variable passed to
* // it when the software timer was created. After the 5th increment the
* // callback function stops the software timer.
* static void prvTimerCallback( TimerHandle_t xExpiredTimer )
* {
* UBaseType_t *puxVariableToIncrement;
* BaseType_t xReturned;
*
* // Obtain the address of the variable to increment from the timer ID.
* puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );
*
* // Increment the variable to show the timer callback has executed.
* ( *puxVariableToIncrement )++;
*
* // If this callback has executed the required number of times, stop the
* // timer.
* if( *puxVariableToIncrement == 5 )
* {
* // This is called from a timer callback so must not block.
* xTimerStop( xExpiredTimer, staticDONT_BLOCK );
* }
* }
*
*
* void main( void )
* {
* // Create the software time. xTimerCreateStatic() has an extra parameter
* // than the normal xTimerCreate() API function. The parameter is a pointer
* // to the StaticTimer_t structure that will hold the software timer
* // structure. If the parameter is passed as NULL then the structure will be
* // allocated dynamically, just as if xTimerCreate() had been called.
* xTimer = xTimerCreateStatic( "T1", // Text name for the task. Helps debugging only. Not used by FreeRTOS.
* xTimerPeriod, // The period of the timer in ticks.
* pdTRUE, // This is an auto-reload timer.
* ( void * ) &uxVariableToIncrement, // A variable incremented by the software timer's callback function
* prvTimerCallback, // The function to execute when the timer expires.
* &xTimerBuffer ); // The buffer that will hold the software timer structure.
*
* // The scheduler has not started yet so a block time is not used.
* xReturned = xTimerStart( xTimer, 0 );
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timers running as they have already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
* }
* @endverbatim
*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
PRIVILEGED_FUNCTION TimerHandle_t xTimerCreateStatic( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction,
StaticTimer_t *pxTimerBuffer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* void *pvTimerGetTimerID( TimerHandle_t xTimer );
*
* Returns the ID assigned to the timer.
*
* IDs are assigned to timers using the pvTimerID parameter of the call to
* xTimerCreated() that was used to create the timer, and by calling the
* vTimerSetTimerID() API function.
*
* If the same callback function is assigned to multiple timers then the timer
* ID can be used as time specific (timer local) storage.
*
* @param xTimer The timer being queried.
*
* @return The ID assigned to the timer being queried.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*/
PRIVILEGED_FUNCTION void *pvTimerGetTimerID( const TimerHandle_t xTimer );
/**
* void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
*
* Sets the ID assigned to the timer.
*
* IDs are assigned to timers using the pvTimerID parameter of the call to
* xTimerCreated() that was used to create the timer.
*
* If the same callback function is assigned to multiple timers then the timer
* ID can be used as time specific (timer local) storage.
*
* @param xTimer The timer being updated.
*
* @param pvNewID The ID to assign to the timer.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*/
PRIVILEGED_FUNCTION void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
/**
* BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer );
*
* Queries a timer to see if it is active or dormant.
*
* A timer will be dormant if:
* 1) It has been created but not started, or
* 2) It is an expired one-shot timer that has not been restarted.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
* xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
* xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the
* active state.
*
* @param xTimer The timer being queried.
*
* @return pdFALSE will be returned if the timer is dormant. A value other than
* pdFALSE will be returned if the timer is active.
*
* Example usage:
* @verbatim
* // This function assumes xTimer has already been created.
* void vAFunction( TimerHandle_t xTimer )
* {
* if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
* {
* // xTimer is active, do something.
* }
* else
* {
* // xTimer is not active, do something else.
* }
* }
* @endverbatim
*/
PRIVILEGED_FUNCTION BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer );
/**
* TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
*
* Simply returns the handle of the timer service/daemon task. It it not valid
* to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started.
*/
PRIVILEGED_FUNCTION TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
/**
* BaseType_t xTimerStart( TimerHandle_t xTimer, TickType_t xTicksToWait );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* through a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerStart() starts a timer that was previously created using the
* xTimerCreate() API function. If the timer had already been started and was
* already in the active state, then xTimerStart() has equivalent functionality
* to the xTimerReset() API function.
*
* Starting a timer ensures the timer is in the active state. If the timer
* is not stopped, deleted, or reset in the mean time, the callback function
* associated with the timer will get called 'n' ticks after xTimerStart() was
* called, where 'n' is the timers defined period.
*
* It is valid to call xTimerStart() before the scheduler has been started, but
* when this is done the timer will not actually start until the scheduler is
* started, and the timers expiry time will be relative to when the scheduler is
* started, not relative to when xTimerStart() was called.
*
* The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart()
* to be available.
*
* @param xTimer The handle of the timer being started/restarted.
*
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the start command to be successfully
* sent to the timer command queue, should the queue already be full when
* xTimerStart() was called. xTicksToWait is ignored if xTimerStart() is called
* before the scheduler is started.
*
* @return pdFAIL will be returned if the start command could not be sent to
* the timer command queue even after xTicksToWait ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system, although the
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*
*/
#define xTimerStart( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
/**
* BaseType_t xTimerStop( TimerHandle_t xTimer, TickType_t xTicksToWait );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* through a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerStop() stops a timer that was previously started using either of the
* The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
* xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions.
*
* Stopping a timer ensures the timer is not in the active state.
*
* The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop()
* to be available.
*
* @param xTimer The handle of the timer being stopped.
*
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the stop command to be successfully
* sent to the timer command queue, should the queue already be full when
* xTimerStop() was called. xTicksToWait is ignored if xTimerStop() is called
* before the scheduler is started.
*
* @return pdFAIL will be returned if the stop command could not be sent to
* the timer command queue even after xTicksToWait ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*
*/
#define xTimerStop( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xTicksToWait ) )
/**
* BaseType_t xTimerChangePeriod( TimerHandle_t xTimer,
* TickType_t xNewPeriod,
* TickType_t xTicksToWait );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* through a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerChangePeriod() changes the period of a timer that was previously
* created using the xTimerCreate() API function.
*
* xTimerChangePeriod() can be called to change the period of an active or
* dormant state timer.
*
* The configUSE_TIMERS configuration constant must be set to 1 for
* xTimerChangePeriod() to be available.
*
* @param xTimer The handle of the timer that is having its period changed.
*
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
* or equal to 1000.
*
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the change period command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerChangePeriod() was called. xTicksToWait is ignored if
* xTimerChangePeriod() is called before the scheduler is started.
*
* @return pdFAIL will be returned if the change period command could not be
* sent to the timer command queue even after xTicksToWait ticks had passed.
* pdPASS will be returned if the command was successfully sent to the timer
* command queue. When the command is actually processed will depend on the
* priority of the timer service/daemon task relative to other tasks in the
* system. The timer service/daemon task priority is set by the
* configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
* @verbatim
* // This function assumes xTimer has already been created. If the timer
* // referenced by xTimer is already active when it is called, then the timer
* // is deleted. If the timer referenced by xTimer is not active when it is
* // called, then the period of the timer is set to 500ms and the timer is
* // started.
* void vAFunction( TimerHandle_t xTimer )
* {
* if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
* {
* // xTimer is already active - delete it.
* xTimerDelete( xTimer );
* }
* else
* {
* // xTimer is not active, change its period to 500ms. This will also
* // cause the timer to start. Block for a maximum of 100 ticks if the
* // change period command cannot immediately be sent to the timer
* // command queue.
* if( xTimerChangePeriod( xTimer, 500 / portTICK_PERIOD_MS, 100 ) == pdPASS )
* {
* // The command was successfully sent.
* }
* else
* {
* // The command could not be sent, even after waiting for 100 ticks
* // to pass. Take appropriate action here.
* }
* }
* }
* @endverbatim
*/
#define xTimerChangePeriod( xTimer, xNewPeriod, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xTicksToWait ) )
/**
* BaseType_t xTimerDelete( TimerHandle_t xTimer, TickType_t xTicksToWait );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* through a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerDelete() deletes a timer that was previously created using the
* xTimerCreate() API function.
*
* The configUSE_TIMERS configuration constant must be set to 1 for
* xTimerDelete() to be available.
*
* @param xTimer The handle of the timer being deleted.
*
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the delete command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerDelete() was called. xTicksToWait is ignored if xTimerDelete()
* is called before the scheduler is started.
*
* @return pdFAIL will be returned if the delete command could not be sent to
* the timer command queue even after xTicksToWait ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
* See the xTimerChangePeriod() API function example usage scenario.
*/
#define xTimerDelete( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xTicksToWait ) )
/**
* BaseType_t xTimerReset( TimerHandle_t xTimer, TickType_t xTicksToWait );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* through a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerReset() re-starts a timer that was previously created using the
* xTimerCreate() API function. If the timer had already been started and was
* already in the active state, then xTimerReset() will cause the timer to
* re-evaluate its expiry time so that it is relative to when xTimerReset() was
* called. If the timer was in the dormant state then xTimerReset() has
* equivalent functionality to the xTimerStart() API function.
*
* Resetting a timer ensures the timer is in the active state. If the timer
* is not stopped, deleted, or reset in the mean time, the callback function
* associated with the timer will get called 'n' ticks after xTimerReset() was
* called, where 'n' is the timers defined period.
*
* It is valid to call xTimerReset() before the scheduler has been started, but
* when this is done the timer will not actually start until the scheduler is
* started, and the timers expiry time will be relative to when the scheduler is
* started, not relative to when xTimerReset() was called.
*
* The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset()
* to be available.
*
* @param xTimer The handle of the timer being reset/started/restarted.
*
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the reset command to be successfully
* sent to the timer command queue, should the queue already be full when
* xTimerReset() was called. xTicksToWait is ignored if xTimerReset() is called
* before the scheduler is started.
*
* @return pdFAIL will be returned if the reset command could not be sent to
* the timer command queue even after xTicksToWait ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system, although the
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
* @verbatim
* // When a key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer.
*
* TimerHandle_t xBacklightTimer = NULL;
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback( TimerHandle_t pxTimer )
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState( BACKLIGHT_OFF );
* }
*
* // The key press event handler.
* void vKeyPressEventHandler( char cKey )
* {
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. Wait 10 ticks for the command to be successfully sent
* // if it cannot be sent immediately.
* vSetBacklightState( BACKLIGHT_ON );
* if( xTimerReset( xBacklightTimer, 100 ) != pdPASS )
* {
* // The reset command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
* }
*
* void main( void )
* {
* int32_t x;
*
* // Create then start the one-shot timer that is responsible for turning
* // the back-light off if no keys are pressed within a 5 second period.
* xBacklightTimer = xTimerCreate( "BacklightTimer", // Just a text name, not used by the kernel.
* ( 5000 / portTICK_PERIOD_MS), // The timer period in ticks.
* pdFALSE, // The timer is a one-shot timer.
* 0, // The id is not used by the callback so can take any value.
* vBacklightTimerCallback // The callback function that switches the LCD back-light off.
* );
*
* if( xBacklightTimer == NULL )
* {
* // The timer was not created.
* }
* else
* {
* // Start the timer. No block time is specified, and even if one was
* // it would be ignored because the scheduler has not yet been
* // started.
* if( xTimerStart( xBacklightTimer, 0 ) != pdPASS )
* {
* // The timer could not be set into the Active state.
* }
* }
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timer running as it has already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
* }
* @endverbatim
*/
#define xTimerReset( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
/**
* BaseType_t xTimerStartFromISR( TimerHandle_t xTimer,
* BaseType_t *pxHigherPriorityTaskWoken );
*
* A version of xTimerStart() that can be called from an interrupt service
* routine.
*
* @param xTimer The handle of the timer being started/restarted.
*
* @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
* of its time in the Blocked state, waiting for messages to arrive on the timer
* command queue. Calling xTimerStartFromISR() writes a message to the timer
* command queue, so has the potential to transition the timer service/daemon
* task out of the Blocked state. If calling xTimerStartFromISR() causes the
* timer service/daemon task to leave the Blocked state, and the timer service/
* daemon task has a priority equal to or greater than the currently executing
* task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
* get set to pdTRUE internally within the xTimerStartFromISR() function. If
* xTimerStartFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the start command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerStartFromISR() is actually called. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
* @verbatim
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback( TimerHandle_t pxTimer )
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState( BACKLIGHT_OFF );
* }
*
* // The key press interrupt service routine.
* void vKeyPressEventInterruptHandler( void )
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then restart the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState( BACKLIGHT_ON );
*
* // xTimerStartFromISR() or xTimerResetFromISR() could be called here
* // as both cause the timer to re-calculate its expiry time.
* // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
* // declared (in this function).
* if( xTimerStartFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
* {
* // The start command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if( xHigherPriorityTaskWoken != pdFALSE )
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
* @endverbatim
*/
#define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
/**
* BaseType_t xTimerStopFromISR( TimerHandle_t xTimer,
* BaseType_t *pxHigherPriorityTaskWoken );
*
* A version of xTimerStop() that can be called from an interrupt service
* routine.
*
* @param xTimer The handle of the timer being stopped.
*
* @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
* of its time in the Blocked state, waiting for messages to arrive on the timer
* command queue. Calling xTimerStopFromISR() writes a message to the timer
* command queue, so has the potential to transition the timer service/daemon
* task out of the Blocked state. If calling xTimerStopFromISR() causes the
* timer service/daemon task to leave the Blocked state, and the timer service/
* daemon task has a priority equal to or greater than the currently executing
* task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
* get set to pdTRUE internally within the xTimerStopFromISR() function. If
* xTimerStopFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the stop command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
* @verbatim
* // This scenario assumes xTimer has already been created and started. When
* // an interrupt occurs, the timer should be simply stopped.
*
* // The interrupt service routine that stops the timer.
* void vAnExampleInterruptServiceRoutine( void )
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // The interrupt has occurred - simply stop the timer.
* // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
* // (within this function). As this is an interrupt service routine, only
* // FreeRTOS API functions that end in "FromISR" can be used.
* if( xTimerStopFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
* {
* // The stop command was not executed successfully. Take appropriate
* // action here.
* }
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if( xHigherPriorityTaskWoken != pdFALSE )
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
* @endverbatim
*/
#define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP_FROM_ISR, 0, ( pxHigherPriorityTaskWoken ), 0U )
/**
* BaseType_t xTimerChangePeriodFromISR( TimerHandle_t xTimer,
* TickType_t xNewPeriod,
* BaseType_t *pxHigherPriorityTaskWoken );
*
* A version of xTimerChangePeriod() that can be called from an interrupt
* service routine.
*
* @param xTimer The handle of the timer that is having its period changed.
*
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
* or equal to 1000.
*
* @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
* of its time in the Blocked state, waiting for messages to arrive on the timer
* command queue. Calling xTimerChangePeriodFromISR() writes a message to the
* timer command queue, so has the potential to transition the timer service/
* daemon task out of the Blocked state. If calling xTimerChangePeriodFromISR()
* causes the timer service/daemon task to leave the Blocked state, and the
* timer service/daemon task has a priority equal to or greater than the
* currently executing task (the task that was interrupted), then
* *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
* xTimerChangePeriodFromISR() function. If xTimerChangePeriodFromISR() sets
* this value to pdTRUE then a context switch should be performed before the
* interrupt exits.
*
* @return pdFAIL will be returned if the command to change the timers period
* could not be sent to the timer command queue. pdPASS will be returned if the
* command was successfully sent to the timer command queue. When the command
* is actually processed will depend on the priority of the timer service/daemon
* task relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
* @verbatim
* // This scenario assumes xTimer has already been created and started. When
* // an interrupt occurs, the period of xTimer should be changed to 500ms.
*
* // The interrupt service routine that changes the period of xTimer.
* void vAnExampleInterruptServiceRoutine( void )
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // The interrupt has occurred - change the period of xTimer to 500ms.
* // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
* // (within this function). As this is an interrupt service routine, only
* // FreeRTOS API functions that end in "FromISR" can be used.
* if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
* {
* // The command to change the timers period was not executed
* // successfully. Take appropriate action here.
* }
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if( xHigherPriorityTaskWoken != pdFALSE )
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
* @endverbatim
*/
#define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD_FROM_ISR, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U )
/**
* BaseType_t xTimerResetFromISR( TimerHandle_t xTimer,
* BaseType_t *pxHigherPriorityTaskWoken );
*
* A version of xTimerReset() that can be called from an interrupt service
* routine.
*
* @param xTimer The handle of the timer that is to be started, reset, or
* restarted.
*
* @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
* of its time in the Blocked state, waiting for messages to arrive on the timer
* command queue. Calling xTimerResetFromISR() writes a message to the timer
* command queue, so has the potential to transition the timer service/daemon
* task out of the Blocked state. If calling xTimerResetFromISR() causes the
* timer service/daemon task to leave the Blocked state, and the timer service/
* daemon task has a priority equal to or greater than the currently executing
* task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
* get set to pdTRUE internally within the xTimerResetFromISR() function. If
* xTimerResetFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the reset command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerResetFromISR() is actually called. The timer service/daemon
* task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
* @verbatim
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback( TimerHandle_t pxTimer )
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState( BACKLIGHT_OFF );
* }
*
* // The key press interrupt service routine.
* void vKeyPressEventInterruptHandler( void )
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState( BACKLIGHT_ON );
*
* // xTimerStartFromISR() or xTimerResetFromISR() could be called here
* // as both cause the timer to re-calculate its expiry time.
* // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
* // declared (in this function).
* if( xTimerResetFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
* {
* // The reset command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if( xHigherPriorityTaskWoken != pdFALSE )
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
* @endverbatim
*/
#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
/**
* BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend,
* void *pvParameter1,
* uint32_t ulParameter2,
* BaseType_t *pxHigherPriorityTaskWoken );
*
*
* Used from application interrupt service routines to defer the execution of a
* function to the RTOS daemon task (the timer service task, hence this function
* is implemented in timers.c and is prefixed with 'Timer').
*
* Ideally an interrupt service routine (ISR) is kept as short as possible, but
* sometimes an ISR either has a lot of processing to do, or needs to perform
* processing that is not deterministic. In these cases
* xTimerPendFunctionCallFromISR() can be used to defer processing of a function
* to the RTOS daemon task.
*
* A mechanism is provided that allows the interrupt to return directly to the
* task that will subsequently execute the pended callback function. This
* allows the callback function to execute contiguously in time with the
* interrupt - just as if the callback had executed in the interrupt itself.
*
* @param xFunctionToPend The function to execute from the timer service/
* daemon task. The function must conform to the PendedFunction_t
* prototype.
*
* @param pvParameter1 The value of the callback function's first parameter.
* The parameter has a void * type to allow it to be used to pass any type.
* For example, unsigned longs can be cast to a void *, or the void * can be
* used to point to a structure.
*
* @param ulParameter2 The value of the callback function's second parameter.
*
* @param pxHigherPriorityTaskWoken As mentioned above, calling this function
* will result in a message being sent to the timer daemon task. If the
* priority of the timer daemon task (which is set using
* configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is higher than the priority of
* the currently running task (the task the interrupt interrupted) then
* *pxHigherPriorityTaskWoken will be set to pdTRUE within
* xTimerPendFunctionCallFromISR(), indicating that a context switch should be
* requested before the interrupt exits. For that reason
* *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
* example code below.
*
* @return pdPASS is returned if the message was successfully sent to the
* timer daemon task, otherwise pdFALSE is returned.
*
* Example usage:
* @verbatim
*
* // The callback function that will execute in the context of the daemon task.
* // Note callback functions must all use this same prototype.
* void vProcessInterface( void *pvParameter1, uint32_t ulParameter2 )
* {
* BaseType_t xInterfaceToService;
*
* // The interface that requires servicing is passed in the second
* // parameter. The first parameter is not used in this case.
* xInterfaceToService = ( BaseType_t ) ulParameter2;
*
* // ...Perform the processing here...
* }
*
* // An ISR that receives data packets from multiple interfaces
* void vAnISR( void )
* {
* BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;
*
* // Query the hardware to determine which interface needs processing.
* xInterfaceToService = prvCheckInterfaces();
*
* // The actual processing is to be deferred to a task. Request the
* // vProcessInterface() callback function is executed, passing in the
* // number of the interface that needs processing. The interface to
* // service is passed in the second parameter. The first parameter is
* // not used in this case.
* xHigherPriorityTaskWoken = pdFALSE;
* xTimerPendFunctionCallFromISR( vProcessInterface, NULL, ( uint32_t ) xInterfaceToService, &xHigherPriorityTaskWoken );
*
* // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
* // switch should be requested. The macro used is port specific and will
* // be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
* // the documentation page for the port being used.
* portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
*
* }
* @endverbatim
*/
PRIVILEGED_FUNCTION BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken );
/**
* BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend,
* void *pvParameter1,
* uint32_t ulParameter2,
* TickType_t xTicksToWait );
*
*
* Used to defer the execution of a function to the RTOS daemon task (the timer
* service task, hence this function is implemented in timers.c and is prefixed
* with 'Timer').
*
* @param xFunctionToPend The function to execute from the timer service/
* daemon task. The function must conform to the PendedFunction_t
* prototype.
*
* @param pvParameter1 The value of the callback function's first parameter.
* The parameter has a void * type to allow it to be used to pass any type.
* For example, unsigned longs can be cast to a void *, or the void * can be
* used to point to a structure.
*
* @param ulParameter2 The value of the callback function's second parameter.
*
* @param xTicksToWait Calling this function will result in a message being
* sent to the timer daemon task on a queue. xTicksToWait is the amount of
* time the calling task should remain in the Blocked state (so not using any
* processing time) for space to become available on the timer queue if the
* queue is found to be full.
*
* @return pdPASS is returned if the message was successfully sent to the
* timer daemon task, otherwise pdFALSE is returned.
*
*/
PRIVILEGED_FUNCTION BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait );
/**
* const char * const pcTimerGetName( TimerHandle_t xTimer );
*
* Returns the name that was assigned to a timer when the timer was created.
*
* @param xTimer The handle of the timer being queried.
*
* @return The name assigned to the timer specified by the xTimer parameter.
*/
PRIVILEGED_FUNCTION const char * pcTimerGetName( TimerHandle_t xTimer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* TickType_t xTimerGetPeriod( TimerHandle_t xTimer );
*
* Returns the period of a timer.
*
* @param xTimer The handle of the timer being queried.
*
* @return The period of the timer in ticks.
*/
PRIVILEGED_FUNCTION TickType_t xTimerGetPeriod( TimerHandle_t xTimer );
/**
* TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer );
*
* Returns the time in ticks at which the timer will expire. If this is less
* than the current tick count then the expiry time has overflowed from the
* current time.
*
* @param xTimer The handle of the timer being queried.
*
* @return If the timer is running then the time in ticks at which the timer
* will next expire is returned. If the timer is not running then the return
* value is undefined.
*/
PRIVILEGED_FUNCTION TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer );
/*
* Functions beyond this part are not part of the public API and are intended
* for use by the kernel only.
*/
PRIVILEGED_FUNCTION BaseType_t xTimerCreateTimerTask( void );
PRIVILEGED_FUNCTION BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait );
#ifdef __cplusplus
}
#endif
#endif /* TIMERS_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#include <stdlib.h>
#include "FreeRTOS.h"
#include "list.h"
/*-----------------------------------------------------------
* PUBLIC LIST API documented in list.h
*----------------------------------------------------------*/
void vListInitialise( List_t * const pxList )
{
/* The list structure contains a list item which is used to mark the
end of the list. To initialise the list the list end is inserted
as the only list entry. */
pxList->pxIndex = ( ListItem_t * ) &( pxList->xListEnd ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
/* The list end value is the highest possible value in the list to
ensure it remains at the end of the list. */
pxList->xListEnd.xItemValue = portMAX_DELAY;
/* The list end next and previous pointers point to itself so we know
when the list is empty. */
pxList->xListEnd.pxNext = ( ListItem_t * ) &( pxList->xListEnd ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
pxList->xListEnd.pxPrevious = ( ListItem_t * ) &( pxList->xListEnd );/*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
pxList->uxNumberOfItems = ( UBaseType_t ) 0U;
/* Write known values into the list if
configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
listSET_LIST_INTEGRITY_CHECK_1_VALUE( pxList );
listSET_LIST_INTEGRITY_CHECK_2_VALUE( pxList );
}
/*-----------------------------------------------------------*/
void vListInitialiseItem( ListItem_t * const pxItem )
{
/* Make sure the list item is not recorded as being on a list. */
pxItem->pvContainer = NULL;
/* Write known values into the list item if
configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
listSET_FIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem );
listSET_SECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE( pxItem );
}
/*-----------------------------------------------------------*/
void vListInsertEnd( List_t * const pxList, ListItem_t * const pxNewListItem )
{
ListItem_t * const pxIndex = pxList->pxIndex;
/* Only effective when configASSERT() is also defined, these tests may catch
the list data structures being overwritten in memory. They will not catch
data errors caused by incorrect configuration or use of FreeRTOS. */
listTEST_LIST_INTEGRITY( pxList );
listTEST_LIST_ITEM_INTEGRITY( pxNewListItem );
/* Insert a new list item into pxList, but rather than sort the list,
makes the new list item the last item to be removed by a call to
listGET_OWNER_OF_NEXT_ENTRY(). */
pxNewListItem->pxNext = pxIndex;
pxNewListItem->pxPrevious = pxIndex->pxPrevious;
/* Only used during decision coverage testing. */
mtCOVERAGE_TEST_DELAY();
pxIndex->pxPrevious->pxNext = pxNewListItem;
pxIndex->pxPrevious = pxNewListItem;
/* Remember which list the item is in. */
pxNewListItem->pvContainer = ( void * ) pxList;
( pxList->uxNumberOfItems )++;
}
/*-----------------------------------------------------------*/
void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem )
{
ListItem_t *pxIterator;
const TickType_t xValueOfInsertion = pxNewListItem->xItemValue;
/* Only effective when configASSERT() is also defined, these tests may catch
the list data structures being overwritten in memory. They will not catch
data errors caused by incorrect configuration or use of FreeRTOS. */
listTEST_LIST_INTEGRITY( pxList );
listTEST_LIST_ITEM_INTEGRITY( pxNewListItem );
/* Insert the new list item into the list, sorted in xItemValue order.
If the list already contains a list item with the same item value then the
new list item should be placed after it. This ensures that TCB's which are
stored in ready lists (all of which have the same xItemValue value) get a
share of the CPU. However, if the xItemValue is the same as the back marker
the iteration loop below will not end. Therefore the value is checked
first, and the algorithm slightly modified if necessary. */
if( xValueOfInsertion == portMAX_DELAY )
{
pxIterator = pxList->xListEnd.pxPrevious;
}
else
{
/* *** NOTE ***********************************************************
If you find your application is crashing here then likely causes are
listed below. In addition see http://www.freertos.org/FAQHelp.html for
more tips, and ensure configASSERT() is defined!
http://www.freertos.org/a00110.html#configASSERT
1) Stack overflow -
see http://www.freertos.org/Stacks-and-stack-overflow-checking.html
2) Incorrect interrupt priority assignment, especially on Cortex-M
parts where numerically high priority values denote low actual
interrupt priorities, which can seem counter intuitive. See
http://www.freertos.org/RTOS-Cortex-M3-M4.html and the definition
of configMAX_SYSCALL_INTERRUPT_PRIORITY on
http://www.freertos.org/a00110.html
3) Calling an API function from within a critical section or when
the scheduler is suspended, or calling an API function that does
not end in "FromISR" from an interrupt.
4) Using a queue or semaphore before it has been initialised or
before the scheduler has been started (are interrupts firing
before vTaskStartScheduler() has been called?).
**********************************************************************/
for( pxIterator = ( ListItem_t * ) &( pxList->xListEnd ); pxIterator->pxNext->xItemValue <= xValueOfInsertion; pxIterator = pxIterator->pxNext ) /*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
{
/* There is nothing to do here, just iterating to the wanted
insertion position. */
}
}
pxNewListItem->pxNext = pxIterator->pxNext;
pxNewListItem->pxNext->pxPrevious = pxNewListItem;
pxNewListItem->pxPrevious = pxIterator;
pxIterator->pxNext = pxNewListItem;
/* Remember which list the item is in. This allows fast removal of the
item later. */
pxNewListItem->pvContainer = ( void * ) pxList;
( pxList->uxNumberOfItems )++;
}
/*-----------------------------------------------------------*/
UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove )
{
/* The list item knows which list it is in. Obtain the list from the list
item. */
List_t * const pxList = ( List_t * ) pxItemToRemove->pvContainer;
pxItemToRemove->pxNext->pxPrevious = pxItemToRemove->pxPrevious;
pxItemToRemove->pxPrevious->pxNext = pxItemToRemove->pxNext;
/* Only used during decision coverage testing. */
mtCOVERAGE_TEST_DELAY();
/* Make sure the index is left pointing to a valid item. */
if( pxList->pxIndex == pxItemToRemove )
{
pxList->pxIndex = pxItemToRemove->pxPrevious;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxItemToRemove->pvContainer = NULL;
( pxList->uxNumberOfItems )--;
return pxList->uxNumberOfItems;
}
/*-----------------------------------------------------------*/
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM4F port.
*----------------------------------------------------------*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef __VFP_FP__
#error This port can only be used when the project options are configured to enable hardware floating point support.
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
/* Constants used to detect a Cortex-M7 r0p1 core, which should use the ARM_CM7
r0p1 port. */
#define portCPUID ( * ( ( volatile uint32_t * ) 0xE000ed00 ) )
#define portCORTEX_M7_r0p1_ID ( 0x410FC271UL )
#define portCORTEX_M7_r0p0_ID ( 0x410FC270UL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0xFFUL )
/* Constants required to manipulate the VFP. */
#define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
#define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
#define portINITIAL_EXEC_RETURN ( 0xfffffffd )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* For strict compliance with the Cortex-M spec the task start address should
have bit-0 clear, as it is loaded into the PC on exit from an ISR. */
#define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* Let the user override the pre-loading of the initial LR with the address of
prvTaskExitError() in case it messes up unwinding of the stack in the
debugger. */
#ifdef configTASK_RETURN_ADDRESS
#define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
#else
#define portTASK_RETURN_ADDRESS prvTaskExitError
#endif
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortPendSVHandler( void ) __attribute__ (( naked ));
void xPortSysTickHandler( void );
void vPortSVCHandler( void ) __attribute__ (( naked ));
/*
* Start first task is a separate function so it can be tested in isolation.
*/
static void prvPortStartFirstTask( void ) __attribute__ (( naked ));
/*
* Function to enable the VFP.
*/
static void vPortEnableVFP( void ) __attribute__ (( naked ));
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
/* Offset added to account for the way the MCU uses the stack on entry/exit
of interrupts, and to ensure alignment. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR */
/* Save code space by skipping register initialisation. */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
/* A save method is being used that requires each task to maintain its
own exec return value. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_EXEC_RETURN;
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
void vPortSVCHandler( void )
{
__asm volatile (
" ldr r3, pxCurrentTCBConst2 \n" /* Restore the context. */
" ldr r1, [r3] \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n" /* Restore the task stack pointer. */
" isb \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
" bx r14 \n"
" \n"
" .align 4 \n"
"pxCurrentTCBConst2: .word pxCurrentTCB \n"
);
}
/*-----------------------------------------------------------*/
static void prvPortStartFirstTask( void )
{
__asm volatile(
" ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */
" ldr r0, [r0] \n"
" ldr r0, [r0] \n"
" msr msp, r0 \n" /* Set the msp back to the start of the stack. */
" cpsie i \n" /* Globally enable interrupts. */
" cpsie f \n"
" dsb \n"
" isb \n"
" svc 0 \n" /* System call to start first task. */
" nop \n"
);
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
/* configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( configMAX_SYSCALL_INTERRUPT_PRIORITY );
/* This port can be used on all revisions of the Cortex-M7 core other than
the r0p1 parts. r0p1 parts should use the port from the
/source/portable/GCC/ARM_CM7/r0p1 directory. */
configASSERT( portCPUID != portCORTEX_M7_r0p1_ID );
configASSERT( portCPUID != portCORTEX_M7_r0p0_ID );
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Ensure the VFP is enabled - it should be anyway. */
vPortEnableVFP();
/* Lazy save always. */
*( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
/* Start the first task. */
prvPortStartFirstTask();
/* Should never get here as the tasks will now be executing! Call the task
exit error function to prevent compiler warnings about a static function
not being called in the case that the application writer overrides this
functionality by defining configTASK_RETURN_ADDRESS. */
prvTaskExitError();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
void xPortPendSVHandler( void )
{
/* This is a naked function. */
__asm volatile
(
" mrs r0, psp \n"
" isb \n"
" \n"
" ldr r3, pxCurrentTCBConst \n" /* Get the location of the current TCB. */
" ldr r2, [r3] \n"
" \n"
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, push high vfp registers. */
" it eq \n"
" vstmdbeq r0!, {s16-s31} \n"
" \n"
" stmdb r0!, {r4-r11, r14} \n" /* Save the core registers. */
" \n"
" str r0, [r2] \n" /* Save the new top of stack into the first member of the TCB. */
" \n"
" stmdb sp!, {r3} \n"
" mov r0, %0 \n"
" msr basepri, r0 \n"
" dsb \n"
" isb \n"
" bl vTaskSwitchContext \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
" ldmia sp!, {r3} \n"
" \n"
" ldr r1, [r3] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldr r0, [r1] \n"
" \n"
" ldmia r0!, {r4-r11, r14} \n" /* Pop the core registers. */
" \n"
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, pop the high vfp registers too. */
" it eq \n"
" vldmiaeq r0!, {s16-s31} \n"
" \n"
" msr psp, r0 \n"
" isb \n"
" \n"
#ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata workaround. */
#if WORKAROUND_PMU_CM001 == 1
" push { r14 } \n"
" pop { pc } \n"
#endif
#endif
" \n"
" bx r14 \n"
" \n"
" .align 4 \n"
"pxCurrentTCBConst: .word pxCurrentTCB \n"
::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY)
);
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
portDISABLE_INTERRUPTS();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portENABLE_INTERRUPTS();
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__attribute__((weak)) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__asm volatile( "cpsid i" );
__asm volatile( "dsb" );
__asm volatile( "isb" );
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above the cpsid instruction()
above. */
__asm volatile( "cpsie i" );
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( &xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__asm volatile( "dsb" );
__asm volatile( "wfi" );
__asm volatile( "isb" );
}
configPOST_SLEEP_PROCESSING( &xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above the cpsid instruction()
above. */
__asm volatile( "cpsie i" );
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the systick timer to generate the tick interrupts at the required
* frequency.
*/
__attribute__(( weak )) void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
/*-----------------------------------------------------------*/
/* This is a naked function. */
static void vPortEnableVFP( void )
{
__asm volatile
(
" ldr.w r0, =0xE000ED88 \n" /* The FPU enable bits are in the CPACR. */
" ldr r1, [r0] \n"
" \n"
" orr r1, r1, #( 0xf << 20 ) \n" /* Enable CP10 and CP11 coprocessors, then save back. */
" str r1, [r0] \n"
" bx r14 "
);
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
__asm volatile( "mrs %0, ipsr" : "=r"( ulCurrentInterrupt ) );
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
/* 32-bit tick type on a 32-bit architecture, so reads of the tick count do
not need to be guarded with a critical section. */
#define portTICK_TYPE_IS_ATOMIC 1
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
#define portYIELD() \
{ \
/* Set a PendSV to request a context switch. */ \
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; \
\
/* Barriers are normally not required but do ensure the code is completely \
within the specified behaviour for the architecture. */ \
__asm volatile( "dsb" ); \
__asm volatile( "isb" ); \
}
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired != pdFALSE ) portYIELD()
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortRaiseBASEPRI()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortSetBASEPRI(x)
#define portDISABLE_INTERRUPTS() vPortRaiseBASEPRI()
#define portENABLE_INTERRUPTS() vPortSetBASEPRI(0)
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Architecture specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Generic helper function. */
__attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap )
{
uint8_t ucReturn;
__asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) );
return ucReturn;
}
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31UL - ( uint32_t ) ucPortCountLeadingZeros( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
#define portINLINE __inline
#ifndef portFORCE_INLINE
#define portFORCE_INLINE inline __attribute__(( always_inline))
#endif
portFORCE_INLINE static BaseType_t xPortIsInsideInterrupt( void )
{
uint32_t ulCurrentInterrupt;
BaseType_t xReturn;
/* Obtain the number of the currently executing interrupt. */
__asm volatile( "mrs %0, ipsr" : "=r"( ulCurrentInterrupt ) );
if( ulCurrentInterrupt == 0 )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
return xReturn;
}
/*-----------------------------------------------------------*/
portFORCE_INLINE static void vPortRaiseBASEPRI( void )
{
uint32_t ulNewBASEPRI;
__asm volatile
(
" mov %0, %1 \n" \
" msr basepri, %0 \n" \
" isb \n" \
" dsb \n" \
:"=r" (ulNewBASEPRI) : "i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
);
}
/*-----------------------------------------------------------*/
portFORCE_INLINE static uint32_t ulPortRaiseBASEPRI( void )
{
uint32_t ulOriginalBASEPRI, ulNewBASEPRI;
__asm volatile
(
" mrs %0, basepri \n" \
" mov %1, %2 \n" \
" msr basepri, %1 \n" \
" isb \n" \
" dsb \n" \
:"=r" (ulOriginalBASEPRI), "=r" (ulNewBASEPRI) : "i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY )
);
/* This return will not be reached but is necessary to prevent compiler
warnings. */
return ulOriginalBASEPRI;
}
/*-----------------------------------------------------------*/
portFORCE_INLINE static void vPortSetBASEPRI( uint32_t ulNewMaskValue )
{
__asm volatile
(
" msr basepri, %0 " :: "r" ( ulNewMaskValue )
);
}
/*-----------------------------------------------------------*/
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that combines
* (coalescences) adjacent memory blocks as they are freed, and in so doing
* limits memory fragmentation.
*
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#if( configSUPPORT_DYNAMIC_ALLOCATION == 0 )
#error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0
#endif
/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) )
/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE ( ( size_t ) 8 )
/* Allocate the memory for the heap. */
#if( configAPPLICATION_ALLOCATED_HEAP == 1 )
/* The application writer has already defined the array used for the RTOS
heap - probably so it can be placed in a special segment or address. */
extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#else
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#endif /* configAPPLICATION_ALLOCATED_HEAP */
/* Define the linked list structure. This is used to link free blocks in order
of their memory address. */
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
/*-----------------------------------------------------------*/
/*
* Inserts a block of memory that is being freed into the correct position in
* the list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.
*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
/*
* Called automatically to setup the required heap structures the first time
* pvPortMalloc() is called.
*/
static void prvHeapInit( void );
/*-----------------------------------------------------------*/
/* The size of the structure placed at the beginning of each allocated memory
block must by correctly byte aligned. */
static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, *pxEnd = NULL;
/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_t xFreeBytesRemaining = 0U;
static size_t xMinimumEverFreeBytesRemaining = 0U;
/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
member of an BlockLink_t structure is set then the block belongs to the
application. When the bit is free the block is still part of the free heap
space. */
static size_t xBlockAllocatedBit = 0;
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
vTaskSuspendAll();
{
/* If this is the first call to malloc then the heap will require
initialisation to setup the list of free blocks. */
if( pxEnd == NULL )
{
prvHeapInit();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Check the requested block size is not so large that the top bit is
set. The top bit of the block size member of the BlockLink_t structure
is used to determine who owns the block - the application or the
kernel, so it must be free. */
if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
{
/* The wanted size is increased so it can contain a BlockLink_t
structure in addition to the requested amount of bytes. */
if( xWantedSize > 0 )
{
xWantedSize += xHeapStructSize;
/* Ensure that blocks are always aligned to the required number
of bytes. */
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
{
/* Traverse the list from the start (lowest address) block until
one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If the end marker was reached then a block of adequate size
was not found. */
if( pxBlock != pxEnd )
{
/* Return the memory space pointed to - jumping over the
BlockLink_t structure at its start. */
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
/* This block is being returned for use so must be taken out
of the list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into
two. */
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
{
/* This block is to be split into two. Create a new
block following the number of bytes requested. The void
cast is used to prevent byte alignment warnings from the
compiler. */
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
/* Calculate the sizes of two blocks split from the
single block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList( pxNewBlockLink );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The block is being returned - it is allocated and owned
by the application and has no "next" block. */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif
configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
if( pv != NULL )
{
/* The memory being freed will have an BlockLink_t structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = ( void * ) puc;
/* Check the block is actually allocated. */
configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
configASSERT( pxLink->pxNextFreeBlock == NULL );
if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
{
if( pxLink->pxNextFreeBlock == NULL )
{
/* The block is being returned to the heap - it is no longer
allocated. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE( pv, pxLink->xBlockSize );
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
}
( void ) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
size_t xPortGetMinimumEverFreeHeapSize( void )
{
return xMinimumEverFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
/* Ensure the heap starts on a correctly aligned boundary. */
uxAddress = ( size_t ) ucHeap;
if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
{
uxAddress += ( portBYTE_ALIGNMENT - 1 );
uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
}
pucAlignedHeap = ( uint8_t * ) uxAddress;
/* xStart is used to hold a pointer to the first item in the list of free
blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
xStart.xBlockSize = ( size_t ) 0;
/* pxEnd is used to mark the end of the list of free blocks and is inserted
at the end of the heap space. */
uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
uxAddress -= xHeapStructSize;
uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
pxEnd = ( void * ) uxAddress;
pxEnd->xBlockSize = 0;
pxEnd->pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
entire heap space, minus the space taken by pxEnd. */
pxFirstFreeBlock = ( void * ) pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
/* Only one block exists - and it covers the entire usable heap space. */
xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
/* Work out the position of the top bit in a size_t variable. */
xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}
/*-----------------------------------------------------------*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
BlockLink_t *pxIterator;
uint8_t *puc;
/* Iterate through the list until a block is found that has a higher address
than the block being inserted. */
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
{
/* Nothing to do here, just iterate to the right position. */
}
/* Do the block being inserted, and the block it is being inserted after
make a contiguous block of memory? */
puc = ( uint8_t * ) pxIterator;
if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
{
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
pxBlockToInsert = pxIterator;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Do the block being inserted, and the block it is being inserted before
make a contiguous block of memory? */
puc = ( uint8_t * ) pxBlockToInsert;
if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
{
if( pxIterator->pxNextFreeBlock != pxEnd )
{
/* Form one big block from the two blocks. */
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxEnd;
}
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
}
/* If the block being inserted plugged a gab, so was merged with the block
before and the block after, then it's pxNextFreeBlock pointer will have
already been set, and should not be set here as that would make it point
to itself. */
if( pxIterator != pxBlockToInsert )
{
pxIterator->pxNextFreeBlock = pxBlockToInsert;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#include <stdlib.h>
#include <string.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#if ( configUSE_CO_ROUTINES == 1 )
#include "croutine.h"
#endif
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
header files above, but not in this file, in order to generate the correct
privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
/* Constants used with the cRxLock and cTxLock structure members. */
#define queueUNLOCKED ( ( int8_t ) -1 )
#define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
/* When the Queue_t structure is used to represent a base queue its pcHead and
pcTail members are used as pointers into the queue storage area. When the
Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
not necessary, and the pcHead pointer is set to NULL to indicate that the
pcTail pointer actually points to the mutex holder (if any). Map alternative
names to the pcHead and pcTail structure members to ensure the readability of
the code is maintained despite this dual use of two structure members. An
alternative implementation would be to use a union, but use of a union is
against the coding standard (although an exception to the standard has been
permitted where the dual use also significantly changes the type of the
structure member). */
#define pxMutexHolder pcTail
#define uxQueueType pcHead
#define queueQUEUE_IS_MUTEX NULL
/* Semaphores do not actually store or copy data, so have an item size of
zero. */
#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
#define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
#if( configUSE_PREEMPTION == 0 )
/* If the cooperative scheduler is being used then a yield should not be
performed just because a higher priority task has been woken. */
#define queueYIELD_IF_USING_PREEMPTION()
#else
#define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
#endif
/*
* Definition of the queue used by the scheduler.
* Items are queued by copy, not reference. See the following link for the
* rationale: http://www.freertos.org/Embedded-RTOS-Queues.html
*/
typedef struct QueueDefinition
{
int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */
{
int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
} u;
List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */
UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
#endif
#if ( configUSE_QUEUE_SETS == 1 )
struct QueueDefinition *pxQueueSetContainer;
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxQueueNumber;
uint8_t ucQueueType;
#endif
} xQUEUE;
/* The old xQUEUE name is maintained above then typedefed to the new Queue_t
name below to enable the use of older kernel aware debuggers. */
typedef xQUEUE Queue_t;
/*-----------------------------------------------------------*/
/*
* The queue registry is just a means for kernel aware debuggers to locate
* queue structures. It has no other purpose so is an optional component.
*/
#if ( configQUEUE_REGISTRY_SIZE > 0 )
/* The type stored within the queue registry array. This allows a name
to be assigned to each queue making kernel aware debugging a little
more user friendly. */
typedef struct QUEUE_REGISTRY_ITEM
{
const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
QueueHandle_t xHandle;
} xQueueRegistryItem;
/* The old xQueueRegistryItem name is maintained above then typedefed to the
new xQueueRegistryItem name below to enable the use of older kernel aware
debuggers. */
typedef xQueueRegistryItem QueueRegistryItem_t;
/* The queue registry is simply an array of QueueRegistryItem_t structures.
The pcQueueName member of a structure being NULL is indicative of the
array position being vacant. */
PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
#endif /* configQUEUE_REGISTRY_SIZE */
/*
* Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
* prevent an ISR from adding or removing items to the queue, but does prevent
* an ISR from removing tasks from the queue event lists. If an ISR finds a
* queue is locked it will instead increment the appropriate queue lock count
* to indicate that a task may require unblocking. When the queue in unlocked
* these lock counts are inspected, and the appropriate action taken.
*/
PRIVILEGED_FUNCTION static void prvUnlockQueue( Queue_t * const pxQueue );
/*
* Uses a critical section to determine if there is any data in a queue.
*
* @return pdTRUE if the queue contains no items, otherwise pdFALSE.
*/
PRIVILEGED_FUNCTION static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue );
/*
* Uses a critical section to determine if there is any space in a queue.
*
* @return pdTRUE if there is no space, otherwise pdFALSE;
*/
PRIVILEGED_FUNCTION static BaseType_t prvIsQueueFull( const Queue_t *pxQueue );
/*
* Copies an item into the queue, either at the front of the queue or the
* back of the queue.
*/
PRIVILEGED_FUNCTION static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition );
/*
* Copies an item out of a queue.
*/
PRIVILEGED_FUNCTION static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer );
#if ( configUSE_QUEUE_SETS == 1 )
/*
* Checks to see if a queue is a member of a queue set, and if so, notifies
* the queue set that the queue contains data.
*/
PRIVILEGED_FUNCTION static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition );
#endif
/*
* Called after a Queue_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
PRIVILEGED_FUNCTION static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue );
/*
* Mutexes are a special type of queue. When a mutex is created, first the
* queue is created, then prvInitialiseMutex() is called to configure the queue
* as a mutex.
*/
#if( configUSE_MUTEXES == 1 )
PRIVILEGED_FUNCTION static void prvInitialiseMutex( Queue_t *pxNewQueue );
#endif
/*-----------------------------------------------------------*/
/*
* Macro to mark a queue as locked. Locking a queue prevents an ISR from
* accessing the queue event lists.
*/
#define prvLockQueue( pxQueue ) \
taskENTER_CRITICAL(); \
{ \
if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
{ \
( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
} \
if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
{ \
( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
} \
} \
taskEXIT_CRITICAL()
/*-----------------------------------------------------------*/
BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue )
{
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
taskENTER_CRITICAL();
{
pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
pxQueue->pcWriteTo = pxQueue->pcHead;
pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize );
pxQueue->cRxLock = queueUNLOCKED;
pxQueue->cTxLock = queueUNLOCKED;
if( xNewQueue == pdFALSE )
{
/* If there are tasks blocked waiting to read from the queue, then
the tasks will remain blocked as after this function exits the queue
will still be empty. If there are tasks blocked waiting to write to
the queue, then one should be unblocked as after this function exits
it will be possible to write to it. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Ensure the event queues start in the correct state. */
vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
}
}
taskEXIT_CRITICAL();
/* A value is returned for calling semantic consistency with previous
versions. */
return pdPASS;
}
/*-----------------------------------------------------------*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType )
{
Queue_t *pxNewQueue;
configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
/* The StaticQueue_t structure and the queue storage area must be
supplied. */
configASSERT( pxStaticQueue != NULL );
/* A queue storage area should be provided if the item size is not 0, and
should not be provided if the item size is 0. */
configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
#if( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
variable of type StaticQueue_t or StaticSemaphore_t equals the size of
the real queue and semaphore structures. */
volatile size_t xSize = sizeof( StaticQueue_t );
configASSERT( xSize == sizeof( Queue_t ) );
}
#endif /* configASSERT_DEFINED */
/* The address of a statically allocated queue was passed in, use it.
The address of a statically allocated storage area was also passed in
but is already set. */
pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
if( pxNewQueue != NULL )
{
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
{
/* Queues can be allocated wither statically or dynamically, so
note this queue was allocated statically in case the queue is
later deleted. */
pxNewQueue->ucStaticallyAllocated = pdTRUE;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
}
return pxNewQueue;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType )
{
Queue_t *pxNewQueue;
size_t xQueueSizeInBytes;
uint8_t *pucQueueStorage;
configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
if( uxItemSize == ( UBaseType_t ) 0 )
{
/* There is not going to be a queue storage area. */
xQueueSizeInBytes = ( size_t ) 0;
}
else
{
/* Allocate enough space to hold the maximum number of items that
can be in the queue at any time. */
xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes );
if( pxNewQueue != NULL )
{
/* Jump past the queue structure to find the location of the queue
storage area. */
pucQueueStorage = ( ( uint8_t * ) pxNewQueue ) + sizeof( Queue_t );
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
{
/* Queues can be created either statically or dynamically, so
note this task was created dynamically in case it is later
deleted. */
pxNewQueue->ucStaticallyAllocated = pdFALSE;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
}
return pxNewQueue;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue )
{
/* Remove compiler warnings about unused parameters should
configUSE_TRACE_FACILITY not be set to 1. */
( void ) ucQueueType;
if( uxItemSize == ( UBaseType_t ) 0 )
{
/* No RAM was allocated for the queue storage area, but PC head cannot
be set to NULL because NULL is used as a key to say the queue is used as
a mutex. Therefore just set pcHead to point to the queue as a benign
value that is known to be within the memory map. */
pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
}
else
{
/* Set the head to the start of the queue storage area. */
pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
}
/* Initialise the queue members as described where the queue type is
defined. */
pxNewQueue->uxLength = uxQueueLength;
pxNewQueue->uxItemSize = uxItemSize;
( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
#if ( configUSE_TRACE_FACILITY == 1 )
{
pxNewQueue->ucQueueType = ucQueueType;
}
#endif /* configUSE_TRACE_FACILITY */
#if( configUSE_QUEUE_SETS == 1 )
{
pxNewQueue->pxQueueSetContainer = NULL;
}
#endif /* configUSE_QUEUE_SETS */
traceQUEUE_CREATE( pxNewQueue );
}
/*-----------------------------------------------------------*/
#if( configUSE_MUTEXES == 1 )
static void prvInitialiseMutex( Queue_t *pxNewQueue )
{
if( pxNewQueue != NULL )
{
/* The queue create function will set all the queue structure members
correctly for a generic queue, but this function is creating a
mutex. Overwrite those members that need to be set differently -
in particular the information required for priority inheritance. */
pxNewQueue->pxMutexHolder = NULL;
pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
/* In case this is a recursive mutex. */
pxNewQueue->u.uxRecursiveCallCount = 0;
traceCREATE_MUTEX( pxNewQueue );
/* Start with the semaphore in the expected state. */
( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
}
else
{
traceCREATE_MUTEX_FAILED();
}
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
{
Queue_t *pxNewQueue;
const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
pxNewQueue = ( Queue_t * ) xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
prvInitialiseMutex( pxNewQueue );
return pxNewQueue;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue )
{
Queue_t *pxNewQueue;
const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
/* Prevent compiler warnings about unused parameters if
configUSE_TRACE_FACILITY does not equal 1. */
( void ) ucQueueType;
pxNewQueue = ( Queue_t * ) xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
prvInitialiseMutex( pxNewQueue );
return pxNewQueue;
}
#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
void* xQueueGetMutexHolder( QueueHandle_t xSemaphore )
{
void *pxReturn;
/* This function is called by xSemaphoreGetMutexHolder(), and should not
be called directly. Note: This is a good way of determining if the
calling task is the mutex holder, but not a good way of determining the
identity of the mutex holder, as the holder may change between the
following critical section exiting and the function returning. */
taskENTER_CRITICAL();
{
if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
{
pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
}
else
{
pxReturn = NULL;
}
}
taskEXIT_CRITICAL();
return pxReturn;
} /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
#endif
/*-----------------------------------------------------------*/
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
{
BaseType_t xReturn;
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
configASSERT( pxMutex );
/* If this is the task that holds the mutex then pxMutexHolder will not
change outside of this task. If this task does not hold the mutex then
pxMutexHolder can never coincidentally equal the tasks handle, and as
this is the only condition we are interested in it does not matter if
pxMutexHolder is accessed simultaneously by another task. Therefore no
mutual exclusion is required to test the pxMutexHolder variable. */
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */
{
traceGIVE_MUTEX_RECURSIVE( pxMutex );
/* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to
the task handle, therefore no underflow check is required. Also,
uxRecursiveCallCount is only modified by the mutex holder, and as
there can only be one, no mutual exclusion is required to modify the
uxRecursiveCallCount member. */
( pxMutex->u.uxRecursiveCallCount )--;
/* Has the recursive call count unwound to 0? */
if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 )
{
/* Return the mutex. This will automatically unblock any other
task that might be waiting to access the mutex. */
( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xReturn = pdPASS;
}
else
{
/* The mutex cannot be given because the calling task is not the
holder. */
xReturn = pdFAIL;
traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
}
return xReturn;
}
#endif /* configUSE_RECURSIVE_MUTEXES */
/*-----------------------------------------------------------*/
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait )
{
BaseType_t xReturn;
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
configASSERT( pxMutex );
/* Comments regarding mutual exclusion as per those within
xQueueGiveMutexRecursive(). */
traceTAKE_MUTEX_RECURSIVE( pxMutex );
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
{
( pxMutex->u.uxRecursiveCallCount )++;
xReturn = pdPASS;
}
else
{
xReturn = xQueueGenericReceive( pxMutex, NULL, xTicksToWait, pdFALSE );
/* pdPASS will only be returned if the mutex was successfully
obtained. The calling task may have entered the Blocked state
before reaching here. */
if( xReturn != pdFAIL )
{
( pxMutex->u.uxRecursiveCallCount )++;
}
else
{
traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
}
}
return xReturn;
}
#endif /* configUSE_RECURSIVE_MUTEXES */
/*-----------------------------------------------------------*/
#if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue )
{
QueueHandle_t xHandle;
configASSERT( uxMaxCount != 0 );
configASSERT( uxInitialCount <= uxMaxCount );
xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
if( xHandle != NULL )
{
( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
traceCREATE_COUNTING_SEMAPHORE();
}
else
{
traceCREATE_COUNTING_SEMAPHORE_FAILED();
}
return xHandle;
}
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
/*-----------------------------------------------------------*/
#if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount )
{
QueueHandle_t xHandle;
configASSERT( uxMaxCount != 0 );
configASSERT( uxInitialCount <= uxMaxCount );
xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
if( xHandle != NULL )
{
( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
traceCREATE_COUNTING_SEMAPHORE();
}
else
{
traceCREATE_COUNTING_SEMAPHORE_FAILED();
}
return xHandle;
}
#endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
/*-----------------------------------------------------------*/
BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition )
{
BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
TimeOut_t xTimeOut;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
{
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
}
#endif
/* This function relaxes the coding standard somewhat to allow return
statements within the function itself. This is done in the interest
of execution time efficiency. */
for( ;; )
{
taskENTER_CRITICAL();
{
/* Is there room on the queue now? The running task must be the
highest priority task wanting to access the queue. If the head item
in the queue is to be overwritten then it does not matter if the
queue is full. */
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
{
traceQUEUE_SEND( pxQueue );
xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
#if ( configUSE_QUEUE_SETS == 1 )
{
if( pxQueue->pxQueueSetContainer != NULL )
{
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
{
/* The queue is a member of a queue set, and posting
to the queue set caused a higher priority task to
unblock. A context switch is required. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* If there was a task waiting for data to arrive on the
queue then unblock it now. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The unblocked task has a priority higher than
our own so yield immediately. Yes it is ok to
do this from within the critical section - the
kernel takes care of that. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else if( xYieldRequired != pdFALSE )
{
/* This path is a special case that will only get
executed if the task was holding multiple mutexes
and the mutexes were given back in an order that is
different to that in which they were taken. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#else /* configUSE_QUEUE_SETS */
{
/* If there was a task waiting for data to arrive on the
queue then unblock it now. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The unblocked task has a priority higher than
our own so yield immediately. Yes it is ok to do
this from within the critical section - the kernel
takes care of that. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else if( xYieldRequired != pdFALSE )
{
/* This path is a special case that will only get
executed if the task was holding multiple mutexes and
the mutexes were given back in an order that is
different to that in which they were taken. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_QUEUE_SETS */
taskEXIT_CRITICAL();
return pdPASS;
}
else
{
if( xTicksToWait == ( TickType_t ) 0 )
{
/* The queue was full and no block time is specified (or
the block time has expired) so leave now. */
taskEXIT_CRITICAL();
/* Return to the original privilege level before exiting
the function. */
traceQUEUE_SEND_FAILED( pxQueue );
return errQUEUE_FULL;
}
else if( xEntryTimeSet == pdFALSE )
{
/* The queue was full and a block time was specified so
configure the timeout structure. */
vTaskSetTimeOutState( &xTimeOut );
xEntryTimeSet = pdTRUE;
}
else
{
/* Entry time was already set. */
mtCOVERAGE_TEST_MARKER();
}
}
}
taskEXIT_CRITICAL();
/* Interrupts and other tasks can send to and receive from the queue
now the critical section has been exited. */
vTaskSuspendAll();
prvLockQueue( pxQueue );
/* Update the timeout state to see if it has expired yet. */
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
{
if( prvIsQueueFull( pxQueue ) != pdFALSE )
{
traceBLOCKING_ON_QUEUE_SEND( pxQueue );
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
/* Unlocking the queue means queue events can effect the
event list. It is possible that interrupts occurring now
remove this task from the event list again - but as the
scheduler is suspended the task will go onto the pending
ready last instead of the actual ready list. */
prvUnlockQueue( pxQueue );
/* Resuming the scheduler will move tasks from the pending
ready list into the ready list - so it is feasible that this
task is already in a ready list before it yields - in which
case the yield will not cause a context switch unless there
is also a higher priority task in the pending ready list. */
if( xTaskResumeAll() == pdFALSE )
{
portYIELD_WITHIN_API();
}
}
else
{
/* Try again. */
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
}
}
else
{
/* The timeout has expired. */
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
traceQUEUE_SEND_FAILED( pxQueue );
return errQUEUE_FULL;
}
}
}
/*-----------------------------------------------------------*/
BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition )
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
/* RTOS ports that support interrupt nesting have the concept of a maximum
system call (or maximum API call) interrupt priority. Interrupts that are
above the maximum system call priority are kept permanently enabled, even
when the RTOS kernel is in a critical section, but cannot make any calls to
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
failure if a FreeRTOS API function is called from an interrupt that has been
assigned a priority above the configured maximum system call priority.
Only FreeRTOS functions that end in FromISR can be called from interrupts
that have been assigned a priority at or (logically) below the maximum
system call interrupt priority. FreeRTOS maintains a separate interrupt
safe API to ensure interrupt entry is as fast and as simple as possible.
More information (albeit Cortex-M specific) is provided on the following
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
/* Similar to xQueueGenericSend, except without blocking if there is no room
in the queue. Also don't directly wake a task that was blocked on a queue
read, instead return a flag to say whether a context switch is required or
not (i.e. has a task with a higher priority than us been woken by this
post). */
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
{
const int8_t cTxLock = pxQueue->cTxLock;
traceQUEUE_SEND_FROM_ISR( pxQueue );
/* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
semaphore or mutex. That means prvCopyDataToQueue() cannot result
in a task disinheriting a priority and prvCopyDataToQueue() can be
called here even though the disinherit function does not check if
the scheduler is suspended before accessing the ready lists. */
( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
/* The event list is not altered if the queue is locked. This will
be done when the queue is unlocked later. */
if( cTxLock == queueUNLOCKED )
{
#if ( configUSE_QUEUE_SETS == 1 )
{
if( pxQueue->pxQueueSetContainer != NULL )
{
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
{
/* The queue is a member of a queue set, and posting
to the queue set caused a higher priority task to
unblock. A context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so
record that a context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#else /* configUSE_QUEUE_SETS */
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so record that a
context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_QUEUE_SETS */
}
else
{
/* Increment the lock count so the task that unlocks the queue
knows that data was posted while it was locked. */
pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
}
xReturn = pdPASS;
}
else
{
traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
xReturn = errQUEUE_FULL;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
/*-----------------------------------------------------------*/
BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken )
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* Similar to xQueueGenericSendFromISR() but used with semaphores where the
item size is 0. Don't directly wake a task that was blocked on a queue
read, instead return a flag to say whether a context switch is required or
not (i.e. has a task with a higher priority than us been woken by this
post). */
configASSERT( pxQueue );
/* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
if the item size is not 0. */
configASSERT( pxQueue->uxItemSize == 0 );
/* Normally a mutex would not be given from an interrupt, especially if
there is a mutex holder, as priority inheritance makes no sense for an
interrupts, only tasks. */
configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) );
/* RTOS ports that support interrupt nesting have the concept of a maximum
system call (or maximum API call) interrupt priority. Interrupts that are
above the maximum system call priority are kept permanently enabled, even
when the RTOS kernel is in a critical section, but cannot make any calls to
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
failure if a FreeRTOS API function is called from an interrupt that has been
assigned a priority above the configured maximum system call priority.
Only FreeRTOS functions that end in FromISR can be called from interrupts
that have been assigned a priority at or (logically) below the maximum
system call interrupt priority. FreeRTOS maintains a separate interrupt
safe API to ensure interrupt entry is as fast and as simple as possible.
More information (albeit Cortex-M specific) is provided on the following
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
/* When the queue is used to implement a semaphore no data is ever
moved through the queue but it is still valid to see if the queue 'has
space'. */
if( uxMessagesWaiting < pxQueue->uxLength )
{
const int8_t cTxLock = pxQueue->cTxLock;
traceQUEUE_SEND_FROM_ISR( pxQueue );
/* A task can only have an inherited priority if it is a mutex
holder - and if there is a mutex holder then the mutex cannot be
given from an ISR. As this is the ISR version of the function it
can be assumed there is no mutex holder and no need to determine if
priority disinheritance is needed. Simply increase the count of
messages (semaphores) available. */
pxQueue->uxMessagesWaiting = uxMessagesWaiting + 1;
/* The event list is not altered if the queue is locked. This will
be done when the queue is unlocked later. */
if( cTxLock == queueUNLOCKED )
{
#if ( configUSE_QUEUE_SETS == 1 )
{
if( pxQueue->pxQueueSetContainer != NULL )
{
if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
{
/* The semaphore is a member of a queue set, and
posting to the queue set caused a higher priority
task to unblock. A context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so
record that a context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#else /* configUSE_QUEUE_SETS */
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so record that a
context switch is required. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_QUEUE_SETS */
}
else
{
/* Increment the lock count so the task that unlocks the queue
knows that data was posted while it was locked. */
pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
}
xReturn = pdPASS;
}
else
{
traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
xReturn = errQUEUE_FULL;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
/*-----------------------------------------------------------*/
BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeeking )
{
BaseType_t xEntryTimeSet = pdFALSE;
TimeOut_t xTimeOut;
int8_t *pcOriginalReadPosition;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
{
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
}
#endif
/* This function relaxes the coding standard somewhat to allow return
statements within the function itself. This is done in the interest
of execution time efficiency. */
for( ;; )
{
taskENTER_CRITICAL();
{
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
/* Is there data in the queue now? To be running the calling task
must be the highest priority task wanting to access the queue. */
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
{
/* Remember the read position in case the queue is only being
peeked. */
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
prvCopyDataFromQueue( pxQueue, pvBuffer );
if( xJustPeeking == pdFALSE )
{
traceQUEUE_RECEIVE( pxQueue );
/* Actually removing data, not just peeking. */
pxQueue->uxMessagesWaiting = uxMessagesWaiting - 1;
#if ( configUSE_MUTEXES == 1 )
{
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
{
/* Record the information required to implement
priority inheritance should it become necessary. */
pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_MUTEXES */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
traceQUEUE_PEEK( pxQueue );
/* The data is not being removed, so reset the read
pointer. */
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
/* The data is being left in the queue, so see if there are
any other tasks waiting for the data. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority than this task. */
queueYIELD_IF_USING_PREEMPTION();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
return pdPASS;
}
else
{
if( xTicksToWait == ( TickType_t ) 0 )
{
/* The queue was empty and no block time is specified (or
the block time has expired) so leave now. */
taskEXIT_CRITICAL();
traceQUEUE_RECEIVE_FAILED( pxQueue );
return errQUEUE_EMPTY;
}
else if( xEntryTimeSet == pdFALSE )
{
/* The queue was empty and a block time was specified so
configure the timeout structure. */
vTaskSetTimeOutState( &xTimeOut );
xEntryTimeSet = pdTRUE;
}
else
{
/* Entry time was already set. */
mtCOVERAGE_TEST_MARKER();
}
}
}
taskEXIT_CRITICAL();
/* Interrupts and other tasks can send to and receive from the queue
now the critical section has been exited. */
vTaskSuspendAll();
prvLockQueue( pxQueue );
/* Update the timeout state to see if it has expired yet. */
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
{
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
{
traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
#if ( configUSE_MUTEXES == 1 )
{
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
{
taskENTER_CRITICAL();
{
vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
prvUnlockQueue( pxQueue );
if( xTaskResumeAll() == pdFALSE )
{
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Try again. */
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
}
}
else
{
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
{
traceQUEUE_RECEIVE_FAILED( pxQueue );
return errQUEUE_EMPTY;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
}
/*-----------------------------------------------------------*/
BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken )
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
/* RTOS ports that support interrupt nesting have the concept of a maximum
system call (or maximum API call) interrupt priority. Interrupts that are
above the maximum system call priority are kept permanently enabled, even
when the RTOS kernel is in a critical section, but cannot make any calls to
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
failure if a FreeRTOS API function is called from an interrupt that has been
assigned a priority above the configured maximum system call priority.
Only FreeRTOS functions that end in FromISR can be called from interrupts
that have been assigned a priority at or (logically) below the maximum
system call interrupt priority. FreeRTOS maintains a separate interrupt
safe API to ensure interrupt entry is as fast and as simple as possible.
More information (albeit Cortex-M specific) is provided on the following
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
/* Cannot block in an ISR, so check there is data available. */
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
{
const int8_t cRxLock = pxQueue->cRxLock;
traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
prvCopyDataFromQueue( pxQueue, pvBuffer );
pxQueue->uxMessagesWaiting = uxMessagesWaiting - 1;
/* If the queue is locked the event list will not be modified.
Instead update the lock count so the task that unlocks the queue
will know that an ISR has removed data while the queue was
locked. */
if( cRxLock == queueUNLOCKED )
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
/* The task waiting has a higher priority than us so
force a context switch. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Increment the lock count so the task that unlocks the queue
knows that data was removed while it was locked. */
pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
}
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
/*-----------------------------------------------------------*/
BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer )
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
int8_t *pcOriginalReadPosition;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
/* RTOS ports that support interrupt nesting have the concept of a maximum
system call (or maximum API call) interrupt priority. Interrupts that are
above the maximum system call priority are kept permanently enabled, even
when the RTOS kernel is in a critical section, but cannot make any calls to
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
failure if a FreeRTOS API function is called from an interrupt that has been
assigned a priority above the configured maximum system call priority.
Only FreeRTOS functions that end in FromISR can be called from interrupts
that have been assigned a priority at or (logically) below the maximum
system call interrupt priority. FreeRTOS maintains a separate interrupt
safe API to ensure interrupt entry is as fast and as simple as possible.
More information (albeit Cortex-M specific) is provided on the following
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Cannot block in an ISR, so check there is data available. */
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
{
traceQUEUE_PEEK_FROM_ISR( pxQueue );
/* Remember the read position so it can be reset as nothing is
actually being removed from the queue. */
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
prvCopyDataFromQueue( pxQueue, pvBuffer );
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}
/*-----------------------------------------------------------*/
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
{
UBaseType_t uxReturn;
configASSERT( xQueue );
taskENTER_CRITICAL();
{
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
}
taskEXIT_CRITICAL();
return uxReturn;
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
/*-----------------------------------------------------------*/
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
{
UBaseType_t uxReturn;
Queue_t *pxQueue;
pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
taskENTER_CRITICAL();
{
uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
}
taskEXIT_CRITICAL();
return uxReturn;
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
/*-----------------------------------------------------------*/
UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
{
UBaseType_t uxReturn;
configASSERT( xQueue );
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
return uxReturn;
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
/*-----------------------------------------------------------*/
void vQueueDelete( QueueHandle_t xQueue )
{
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
configASSERT( pxQueue );
traceQUEUE_DELETE( pxQueue );
#if ( configQUEUE_REGISTRY_SIZE > 0 )
{
vQueueUnregisterQueue( pxQueue );
}
#endif
#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
{
/* The queue can only have been allocated dynamically - free it
again. */
vPortFree( pxQueue );
}
#elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
{
/* The queue could have been allocated statically or dynamically, so
check before attempting to free the memory. */
if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
{
vPortFree( pxQueue );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else
{
/* The queue must have been statically allocated, so is not going to be
deleted. Avoid compiler warnings about the unused parameter. */
( void ) pxQueue;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
{
return ( ( Queue_t * ) xQueue )->uxQueueNumber;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber )
{
( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
#if ( configUSE_TRACE_FACILITY == 1 )
uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
{
return ( ( Queue_t * ) xQueue )->ucQueueType;
}
#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/
static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition )
{
BaseType_t xReturn = pdFALSE;
UBaseType_t uxMessagesWaiting;
/* This function is called from a critical section. */
uxMessagesWaiting = pxQueue->uxMessagesWaiting;
if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
{
#if ( configUSE_MUTEXES == 1 )
{
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
{
/* The mutex is no longer being held. */
xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder );
pxQueue->pxMutexHolder = NULL;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_MUTEXES */
}
else if( xPosition == queueSEND_TO_BACK )
{
( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */
pxQueue->pcWriteTo += pxQueue->uxItemSize;
if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
{
pxQueue->pcWriteTo = pxQueue->pcHead;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
pxQueue->u.pcReadFrom -= pxQueue->uxItemSize;
if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
{
pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( xPosition == queueOVERWRITE )
{
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
{
/* An item is not being added but overwritten, so subtract
one from the recorded number of items in the queue so when
one is added again below the number of recorded items remains
correct. */
--uxMessagesWaiting;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
pxQueue->uxMessagesWaiting = uxMessagesWaiting + 1;
return xReturn;
}
/*-----------------------------------------------------------*/
static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer )
{
if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
{
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
{
pxQueue->u.pcReadFrom = pxQueue->pcHead;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */
}
}
/*-----------------------------------------------------------*/
static void prvUnlockQueue( Queue_t * const pxQueue )
{
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
/* The lock counts contains the number of extra data items placed or
removed from the queue while the queue was locked. When a queue is
locked items can be added or removed, but the event lists cannot be
updated. */
taskENTER_CRITICAL();
{
int8_t cTxLock = pxQueue->cTxLock;
/* See if data was added to the queue while it was locked. */
while( cTxLock > queueLOCKED_UNMODIFIED )
{
/* Data was posted while the queue was locked. Are any tasks
blocked waiting for data to become available? */
#if ( configUSE_QUEUE_SETS == 1 )
{
if( pxQueue->pxQueueSetContainer != NULL )
{
if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
{
/* The queue is a member of a queue set, and posting to
the queue set caused a higher priority task to unblock.
A context switch is required. */
vTaskMissedYield();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Tasks that are removed from the event list will get
added to the pending ready list as the scheduler is still
suspended. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so record that a
context switch is required. */
vTaskMissedYield();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
break;
}
}
}
#else /* configUSE_QUEUE_SETS */
{
/* Tasks that are removed from the event list will get added to
the pending ready list as the scheduler is still suspended. */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority so record that
a context switch is required. */
vTaskMissedYield();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
break;
}
}
#endif /* configUSE_QUEUE_SETS */
--cTxLock;
}
pxQueue->cTxLock = queueUNLOCKED;
}
taskEXIT_CRITICAL();
/* Do the same for the Rx lock. */
taskENTER_CRITICAL();
{
int8_t cRxLock = pxQueue->cRxLock;
while( cRxLock > queueLOCKED_UNMODIFIED )
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
vTaskMissedYield();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--cRxLock;
}
else
{
break;
}
}
pxQueue->cRxLock = queueUNLOCKED;
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue )
{
BaseType_t xReturn;
taskENTER_CRITICAL();
{
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
taskEXIT_CRITICAL();
return xReturn;
}
/*-----------------------------------------------------------*/
BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
{
BaseType_t xReturn;
configASSERT( xQueue );
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
/*-----------------------------------------------------------*/
static BaseType_t prvIsQueueFull( const Queue_t *pxQueue )
{
BaseType_t xReturn;
taskENTER_CRITICAL();
{
if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
}
taskEXIT_CRITICAL();
return xReturn;
}
/*-----------------------------------------------------------*/
BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
{
BaseType_t xReturn;
configASSERT( xQueue );
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
/*-----------------------------------------------------------*/
#if ( configUSE_CO_ROUTINES == 1 )
BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
{
BaseType_t xReturn;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* If the queue is already full we may have to block. A critical section
is required to prevent an interrupt removing something from the queue
between the check to see if the queue is full and blocking on the queue. */
portDISABLE_INTERRUPTS();
{
if( prvIsQueueFull( pxQueue ) != pdFALSE )
{
/* The queue is full - do we want to block or just leave without
posting? */
if( xTicksToWait > ( TickType_t ) 0 )
{
/* As this is called from a coroutine we cannot block directly, but
return indicating that we need to block. */
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
portENABLE_INTERRUPTS();
return errQUEUE_BLOCKED;
}
else
{
portENABLE_INTERRUPTS();
return errQUEUE_FULL;
}
}
}
portENABLE_INTERRUPTS();
portDISABLE_INTERRUPTS();
{
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
{
/* There is room in the queue, copy the data into the queue. */
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
xReturn = pdPASS;
/* Were any co-routines waiting for data to become available? */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
/* In this instance the co-routine could be placed directly
into the ready list as we are within a critical section.
Instead the same pending ready list mechanism is used as if
the event were caused from within an interrupt. */
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The co-routine waiting has a higher priority so record
that a yield might be appropriate. */
xReturn = errQUEUE_YIELD;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
xReturn = errQUEUE_FULL;
}
}
portENABLE_INTERRUPTS();
return xReturn;
}
#endif /* configUSE_CO_ROUTINES */
/*-----------------------------------------------------------*/
#if ( configUSE_CO_ROUTINES == 1 )
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
{
BaseType_t xReturn;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* If the queue is already empty we may have to block. A critical section
is required to prevent an interrupt adding something to the queue
between the check to see if the queue is empty and blocking on the queue. */
portDISABLE_INTERRUPTS();
{
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
{
/* There are no messages in the queue, do we want to block or just
leave with nothing? */
if( xTicksToWait > ( TickType_t ) 0 )
{
/* As this is a co-routine we cannot block directly, but return
indicating that we need to block. */
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
portENABLE_INTERRUPTS();
return errQUEUE_BLOCKED;
}
else
{
portENABLE_INTERRUPTS();
return errQUEUE_FULL;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
portENABLE_INTERRUPTS();
portDISABLE_INTERRUPTS();
{
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
{
/* Data is available from the queue. */
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
{
pxQueue->u.pcReadFrom = pxQueue->pcHead;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--( pxQueue->uxMessagesWaiting );
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
xReturn = pdPASS;
/* Were any co-routines waiting for space to become available? */
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
/* In this instance the co-routine could be placed directly
into the ready list as we are within a critical section.
Instead the same pending ready list mechanism is used as if
the event were caused from within an interrupt. */
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
xReturn = errQUEUE_YIELD;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
xReturn = pdFAIL;
}
}
portENABLE_INTERRUPTS();
return xReturn;
}
#endif /* configUSE_CO_ROUTINES */
/*-----------------------------------------------------------*/
#if ( configUSE_CO_ROUTINES == 1 )
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
{
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* Cannot block within an ISR so if there is no space on the queue then
exit without doing anything. */
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
{
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
/* We only want to wake one co-routine per ISR, so check that a
co-routine has not already been woken. */
if( xCoRoutinePreviouslyWoken == pdFALSE )
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
return pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xCoRoutinePreviouslyWoken;
}
#endif /* configUSE_CO_ROUTINES */
/*-----------------------------------------------------------*/
#if ( configUSE_CO_ROUTINES == 1 )
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
{
BaseType_t xReturn;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* We cannot block from an ISR, so check there is data available. If
not then just leave without doing anything. */
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
{
/* Copy the data from the queue. */
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
{
pxQueue->u.pcReadFrom = pxQueue->pcHead;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
--( pxQueue->uxMessagesWaiting );
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
if( ( *pxCoRoutineWoken ) == pdFALSE )
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
*pxCoRoutineWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
return xReturn;
}
#endif /* configUSE_CO_ROUTINES */
/*-----------------------------------------------------------*/
#if ( configQUEUE_REGISTRY_SIZE > 0 )
void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
UBaseType_t ux;
/* See if there is an empty space in the registry. A NULL name denotes
a free slot. */
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
{
if( xQueueRegistry[ ux ].pcQueueName == NULL )
{
/* Store the information on this queue. */
xQueueRegistry[ ux ].pcQueueName = pcQueueName;
xQueueRegistry[ ux ].xHandle = xQueue;
traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#endif /* configQUEUE_REGISTRY_SIZE */
/*-----------------------------------------------------------*/
#if ( configQUEUE_REGISTRY_SIZE > 0 )
const char *pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
UBaseType_t ux;
const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/* Note there is nothing here to protect against another task adding or
removing entries from the registry while it is being searched. */
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
{
if( xQueueRegistry[ ux ].xHandle == xQueue )
{
pcReturn = xQueueRegistry[ ux ].pcQueueName;
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
return pcReturn;
}
#endif /* configQUEUE_REGISTRY_SIZE */
/*-----------------------------------------------------------*/
#if ( configQUEUE_REGISTRY_SIZE > 0 )
void vQueueUnregisterQueue( QueueHandle_t xQueue )
{
UBaseType_t ux;
/* See if the handle of the queue being unregistered in actually in the
registry. */
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
{
if( xQueueRegistry[ ux ].xHandle == xQueue )
{
/* Set the name to NULL to show that this slot if free again. */
xQueueRegistry[ ux ].pcQueueName = NULL;
/* Set the handle to NULL to ensure the same queue handle cannot
appear in the registry twice if it is added, removed, then
added again. */
xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
#endif /* configQUEUE_REGISTRY_SIZE */
/*-----------------------------------------------------------*/
#if ( configUSE_TIMERS == 1 )
void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
{
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
/* This function should not be called by application code hence the
'Restricted' in its name. It is not part of the public API. It is
designed for use by kernel code, and has special calling requirements.
It can result in vListInsert() being called on a list that can only
possibly ever have one item in it, so the list will be fast, but even
so it should be called with the scheduler locked and not from a critical
section. */
/* Only do anything if there are no messages in the queue. This function
will not actually cause the task to block, just place it on a blocked
list. It will not block until the scheduler is unlocked - at which
time a yield will be performed. If an item is added to the queue while
the queue is locked, and the calling task blocks on the queue, then the
calling task will be immediately unblocked when the queue is unlocked. */
prvLockQueue( pxQueue );
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
{
/* There is nothing in the queue, block for the specified period. */
vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvUnlockQueue( pxQueue );
}
#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/
#if( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
{
QueueSetHandle_t pxQueue;
pxQueue = xQueueGenericCreate( uxEventQueueLength, sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
return pxQueue;
}
#endif /* configUSE_QUEUE_SETS */
/*-----------------------------------------------------------*/
#if ( configUSE_QUEUE_SETS == 1 )
BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
{
BaseType_t xReturn;
taskENTER_CRITICAL();
{
if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
{
/* Cannot add a queue/semaphore to more than one queue set. */
xReturn = pdFAIL;
}
else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
{
/* Cannot add a queue/semaphore to a queue set if there are already
items in the queue/semaphore. */
xReturn = pdFAIL;
}
else
{
( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
xReturn = pdPASS;
}
}
taskEXIT_CRITICAL();
return xReturn;
}
#endif /* configUSE_QUEUE_SETS */
/*-----------------------------------------------------------*/
#if ( configUSE_QUEUE_SETS == 1 )
BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
{
BaseType_t xReturn;
Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
{
/* The queue was not a member of the set. */
xReturn = pdFAIL;
}
else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
{
/* It is dangerous to remove a queue from a set when the queue is
not empty because the queue set will still hold pending events for
the queue. */
xReturn = pdFAIL;
}
else
{
taskENTER_CRITICAL();
{
/* The queue is no longer contained in the set. */
pxQueueOrSemaphore->pxQueueSetContainer = NULL;
}
taskEXIT_CRITICAL();
xReturn = pdPASS;
}
return xReturn;
} /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
#endif /* configUSE_QUEUE_SETS */
/*-----------------------------------------------------------*/
#if ( configUSE_QUEUE_SETS == 1 )
QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait )
{
QueueSetMemberHandle_t xReturn = NULL;
( void ) xQueueGenericReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait, pdFALSE ); /*lint !e961 Casting from one typedef to another is not redundant. */
return xReturn;
}
#endif /* configUSE_QUEUE_SETS */
/*-----------------------------------------------------------*/
#if ( configUSE_QUEUE_SETS == 1 )
QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
{
QueueSetMemberHandle_t xReturn = NULL;
( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
return xReturn;
}
#endif /* configUSE_QUEUE_SETS */
/*-----------------------------------------------------------*/
#if ( configUSE_QUEUE_SETS == 1 )
static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition )
{
Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
BaseType_t xReturn = pdFALSE;
/* This function must be called form a critical section. */
configASSERT( pxQueueSetContainer );
configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
{
const int8_t cTxLock = pxQueueSetContainer->cTxLock;
traceQUEUE_SEND( pxQueueSetContainer );
/* The data copied is the handle of the queue that contains data. */
xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
if( cTxLock == queueUNLOCKED )
{
if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* The task waiting has a higher priority. */
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
}
#endif /* configUSE_QUEUE_SETS */
This source diff could not be displayed because it is too large. You can view the blob instead.
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/* Standard includes. */
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "timers.h"
#if ( INCLUDE_xTimerPendFunctionCall == 1 ) && ( configUSE_TIMERS == 0 )
#error configUSE_TIMERS must be set to 1 to make the xTimerPendFunctionCall() function available.
#endif
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
header files above, but not in this file, in order to generate the correct
privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
/* This entire source file will be skipped if the application is not configured
to include software timer functionality. This #if is closed at the very bottom
of this file. If you want to include software timer functionality then ensure
configUSE_TIMERS is set to 1 in FreeRTOSConfig.h. */
#if ( configUSE_TIMERS == 1 )
/* Misc definitions. */
#define tmrNO_DELAY ( TickType_t ) 0U
/* The definition of the timers themselves. */
typedef struct tmrTimerControl
{
const char *pcTimerName; /*<< Text name. This is not used by the kernel, it is included simply to make debugging easier. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
ListItem_t xTimerListItem; /*<< Standard linked list item as used by all kernel features for event management. */
TickType_t xTimerPeriodInTicks;/*<< How quickly and often the timer expires. */
UBaseType_t uxAutoReload; /*<< Set to pdTRUE if the timer should be automatically restarted once expired. Set to pdFALSE if the timer is, in effect, a one-shot timer. */
void *pvTimerID; /*<< An ID to identify the timer. This allows the timer to be identified when the same callback is used for multiple timers. */
TimerCallbackFunction_t pxCallbackFunction; /*<< The function that will be called when the timer expires. */
#if( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTimerNumber; /*<< An ID assigned by trace tools such as FreeRTOS+Trace */
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucStaticallyAllocated; /*<< Set to pdTRUE if the timer was created statically so no attempt is made to free the memory again if the timer is later deleted. */
#endif
} xTIMER;
/* The old xTIMER name is maintained above then typedefed to the new Timer_t
name below to enable the use of older kernel aware debuggers. */
typedef xTIMER Timer_t;
/* The definition of messages that can be sent and received on the timer queue.
Two types of message can be queued - messages that manipulate a software timer,
and messages that request the execution of a non-timer related callback. The
two message types are defined in two separate structures, xTimerParametersType
and xCallbackParametersType respectively. */
typedef struct tmrTimerParameters
{
TickType_t xMessageValue; /*<< An optional value used by a subset of commands, for example, when changing the period of a timer. */
Timer_t * pxTimer; /*<< The timer to which the command will be applied. */
} TimerParameter_t;
typedef struct tmrCallbackParameters
{
PendedFunction_t pxCallbackFunction; /* << The callback function to execute. */
void *pvParameter1; /* << The value that will be used as the callback functions first parameter. */
uint32_t ulParameter2; /* << The value that will be used as the callback functions second parameter. */
} CallbackParameters_t;
/* The structure that contains the two message types, along with an identifier
that is used to determine which message type is valid. */
typedef struct tmrTimerQueueMessage
{
BaseType_t xMessageID; /*<< The command being sent to the timer service task. */
union
{
TimerParameter_t xTimerParameters;
/* Don't include xCallbackParameters if it is not going to be used as
it makes the structure (and therefore the timer queue) larger. */
#if ( INCLUDE_xTimerPendFunctionCall == 1 )
CallbackParameters_t xCallbackParameters;
#endif /* INCLUDE_xTimerPendFunctionCall */
} u;
} DaemonTaskMessage_t;
/*lint -e956 A manual analysis and inspection has been used to determine which
static variables must be declared volatile. */
/* The list in which active timers are stored. Timers are referenced in expire
time order, with the nearest expiry time at the front of the list. Only the
timer service task is allowed to access these lists. */
PRIVILEGED_DATA static List_t xActiveTimerList1;
PRIVILEGED_DATA static List_t xActiveTimerList2;
PRIVILEGED_DATA static List_t *pxCurrentTimerList;
PRIVILEGED_DATA static List_t *pxOverflowTimerList;
/* A queue that is used to send commands to the timer service task. */
PRIVILEGED_INITIALIZED_DATA static QueueHandle_t xTimerQueue = NULL;
PRIVILEGED_INITIALIZED_DATA static TaskHandle_t xTimerTaskHandle = NULL;
/*lint +e956 */
/*-----------------------------------------------------------*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
/* If static allocation is supported then the application must provide the
following callback function - which enables the application to optionally
provide the memory that will be used by the timer task as the task's stack
and TCB. */
extern void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize );
#endif
/*
* Initialise the infrastructure used by the timer service task if it has not
* been initialised already.
*/
PRIVILEGED_FUNCTION static void prvCheckForValidListAndQueue( void );
/*
* The timer service task (daemon). Timer functionality is controlled by this
* task. Other tasks communicate with the timer service task using the
* xTimerQueue queue.
*/
PRIVILEGED_FUNCTION static void prvTimerTask( void *pvParameters );
/*
* Called by the timer service task to interpret and process a command it
* received on the timer queue.
*/
PRIVILEGED_FUNCTION static void prvProcessReceivedCommands( void );
/*
* Insert the timer into either xActiveTimerList1, or xActiveTimerList2,
* depending on if the expire time causes a timer counter overflow.
*/
PRIVILEGED_FUNCTION static BaseType_t prvInsertTimerInActiveList( Timer_t * const pxTimer, const TickType_t xNextExpiryTime, const TickType_t xTimeNow, const TickType_t xCommandTime );
/*
* An active timer has reached its expire time. Reload the timer if it is an
* auto reload timer, then call its callback.
*/
PRIVILEGED_FUNCTION static void prvProcessExpiredTimer( const TickType_t xNextExpireTime, const TickType_t xTimeNow );
/*
* The tick count has overflowed. Switch the timer lists after ensuring the
* current timer list does not still reference some timers.
*/
PRIVILEGED_FUNCTION static void prvSwitchTimerLists( void );
/*
* Obtain the current tick count, setting *pxTimerListsWereSwitched to pdTRUE
* if a tick count overflow occurred since prvSampleTimeNow() was last called.
*/
PRIVILEGED_FUNCTION static TickType_t prvSampleTimeNow( BaseType_t * const pxTimerListsWereSwitched );
/*
* If the timer list contains any active timers then return the expire time of
* the timer that will expire first and set *pxListWasEmpty to false. If the
* timer list does not contain any timers then return 0 and set *pxListWasEmpty
* to pdTRUE.
*/
PRIVILEGED_FUNCTION static TickType_t prvGetNextExpireTime( BaseType_t * const pxListWasEmpty );
/*
* If a timer has expired, process it. Otherwise, block the timer service task
* until either a timer does expire or a command is received.
*/
PRIVILEGED_FUNCTION static void prvProcessTimerOrBlockTask( const TickType_t xNextExpireTime, BaseType_t xListWasEmpty );
/*
* Called after a Timer_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
PRIVILEGED_FUNCTION static void prvInitialiseNewTimer( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction,
Timer_t *pxNewTimer ); /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/*-----------------------------------------------------------*/
BaseType_t xTimerCreateTimerTask( void )
{
BaseType_t xReturn = pdFAIL;
/* This function is called when the scheduler is started if
configUSE_TIMERS is set to 1. Check that the infrastructure used by the
timer service task has been created/initialised. If timers have already
been created then the initialisation will already have been performed. */
prvCheckForValidListAndQueue();
if( xTimerQueue != NULL )
{
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
{
StaticTask_t *pxTimerTaskTCBBuffer = NULL;
StackType_t *pxTimerTaskStackBuffer = NULL;
uint32_t ulTimerTaskStackSize;
vApplicationGetTimerTaskMemory( &pxTimerTaskTCBBuffer, &pxTimerTaskStackBuffer, &ulTimerTaskStackSize );
xTimerTaskHandle = xTaskCreateStatic( prvTimerTask,
"Tmr Svc",
ulTimerTaskStackSize,
NULL,
( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
pxTimerTaskStackBuffer,
pxTimerTaskTCBBuffer );
if( xTimerTaskHandle != NULL )
{
xReturn = pdPASS;
}
}
#else
{
xReturn = xTaskCreate( prvTimerTask,
"Tmr Svc",
configTIMER_TASK_STACK_DEPTH,
NULL,
( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
&xTimerTaskHandle );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
configASSERT( xReturn );
return xReturn;
}
/*-----------------------------------------------------------*/
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
TimerHandle_t xTimerCreate( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
Timer_t *pxNewTimer;
pxNewTimer = ( Timer_t * ) pvPortMalloc( sizeof( Timer_t ) );
if( pxNewTimer != NULL )
{
prvInitialiseNewTimer( pcTimerName, xTimerPeriodInTicks, uxAutoReload, pvTimerID, pxCallbackFunction, pxNewTimer );
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
{
/* Timers can be created statically or dynamically, so note this
timer was created dynamically in case the timer is later
deleted. */
pxNewTimer->ucStaticallyAllocated = pdFALSE;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}
return pxNewTimer;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
TimerHandle_t xTimerCreateStatic( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction,
StaticTimer_t *pxTimerBuffer ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
Timer_t *pxNewTimer;
#if( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
variable of type StaticTimer_t equals the size of the real timer
structures. */
volatile size_t xSize = sizeof( StaticTimer_t );
configASSERT( xSize == sizeof( Timer_t ) );
}
#endif /* configASSERT_DEFINED */
/* A pointer to a StaticTimer_t structure MUST be provided, use it. */
configASSERT( pxTimerBuffer );
pxNewTimer = ( Timer_t * ) pxTimerBuffer; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
if( pxNewTimer != NULL )
{
prvInitialiseNewTimer( pcTimerName, xTimerPeriodInTicks, uxAutoReload, pvTimerID, pxCallbackFunction, pxNewTimer );
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
{
/* Timers can be created statically or dynamically so note this
timer was created statically in case it is later deleted. */
pxNewTimer->ucStaticallyAllocated = pdTRUE;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
}
return pxNewTimer;
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
static void prvInitialiseNewTimer( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction,
Timer_t *pxNewTimer ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
/* 0 is not a valid value for xTimerPeriodInTicks. */
configASSERT( ( xTimerPeriodInTicks > 0 ) );
if( pxNewTimer != NULL )
{
/* Ensure the infrastructure used by the timer service task has been
created/initialised. */
prvCheckForValidListAndQueue();
/* Initialise the timer structure members using the function
parameters. */
pxNewTimer->pcTimerName = pcTimerName;
pxNewTimer->xTimerPeriodInTicks = xTimerPeriodInTicks;
pxNewTimer->uxAutoReload = uxAutoReload;
pxNewTimer->pvTimerID = pvTimerID;
pxNewTimer->pxCallbackFunction = pxCallbackFunction;
vListInitialiseItem( &( pxNewTimer->xTimerListItem ) );
traceTIMER_CREATE( pxNewTimer );
}
}
/*-----------------------------------------------------------*/
BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait )
{
BaseType_t xReturn = pdFAIL;
DaemonTaskMessage_t xMessage;
configASSERT( xTimer );
/* Send a message to the timer service task to perform a particular action
on a particular timer definition. */
if( xTimerQueue != NULL )
{
/* Send a command to the timer service task to start the xTimer timer. */
xMessage.xMessageID = xCommandID;
xMessage.u.xTimerParameters.xMessageValue = xOptionalValue;
xMessage.u.xTimerParameters.pxTimer = ( Timer_t * ) xTimer;
if( xCommandID < tmrFIRST_FROM_ISR_COMMAND )
{
if( xTaskGetSchedulerState() == taskSCHEDULER_RUNNING )
{
xReturn = xQueueSendToBack( xTimerQueue, &xMessage, xTicksToWait );
}
else
{
xReturn = xQueueSendToBack( xTimerQueue, &xMessage, tmrNO_DELAY );
}
}
else
{
xReturn = xQueueSendToBackFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
}
traceTIMER_COMMAND_SEND( xTimer, xCommandID, xOptionalValue, xReturn );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
}
/*-----------------------------------------------------------*/
TaskHandle_t xTimerGetTimerDaemonTaskHandle( void )
{
/* If xTimerGetTimerDaemonTaskHandle() is called before the scheduler has been
started, then xTimerTaskHandle will be NULL. */
configASSERT( ( xTimerTaskHandle != NULL ) );
return xTimerTaskHandle;
}
/*-----------------------------------------------------------*/
TickType_t xTimerGetPeriod( TimerHandle_t xTimer )
{
Timer_t *pxTimer = ( Timer_t * ) xTimer;
configASSERT( xTimer );
return pxTimer->xTimerPeriodInTicks;
}
/*-----------------------------------------------------------*/
TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer )
{
Timer_t * pxTimer = ( Timer_t * ) xTimer;
TickType_t xReturn;
configASSERT( xTimer );
xReturn = listGET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ) );
return xReturn;
}
/*-----------------------------------------------------------*/
const char * pcTimerGetName( TimerHandle_t xTimer ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
Timer_t *pxTimer = ( Timer_t * ) xTimer;
configASSERT( xTimer );
return pxTimer->pcTimerName;
}
/*-----------------------------------------------------------*/
static void prvProcessExpiredTimer( const TickType_t xNextExpireTime, const TickType_t xTimeNow )
{
BaseType_t xResult;
Timer_t * const pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );
/* Remove the timer from the list of active timers. A check has already
been performed to ensure the list is not empty. */
( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
traceTIMER_EXPIRED( pxTimer );
/* If the timer is an auto reload timer then calculate the next
expiry time and re-insert the timer in the list of active timers. */
if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
{
/* The timer is inserted into a list using a time relative to anything
other than the current time. It will therefore be inserted into the
correct list relative to the time this task thinks it is now. */
if( prvInsertTimerInActiveList( pxTimer, ( xNextExpireTime + pxTimer->xTimerPeriodInTicks ), xTimeNow, xNextExpireTime ) != pdFALSE )
{
/* The timer expired before it was added to the active timer
list. Reload it now. */
xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
configASSERT( xResult );
( void ) xResult;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Call the timer callback. */
pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
}
/*-----------------------------------------------------------*/
static void prvTimerTask( void *pvParameters )
{
TickType_t xNextExpireTime;
BaseType_t xListWasEmpty;
/* Just to avoid compiler warnings. */
( void ) pvParameters;
#if( configUSE_DAEMON_TASK_STARTUP_HOOK == 1 )
{
extern void vApplicationDaemonTaskStartupHook( void );
/* Allow the application writer to execute some code in the context of
this task at the point the task starts executing. This is useful if the
application includes initialisation code that would benefit from
executing after the scheduler has been started. */
vApplicationDaemonTaskStartupHook();
}
#endif /* configUSE_DAEMON_TASK_STARTUP_HOOK */
for( ;; )
{
/* Query the timers list to see if it contains any timers, and if so,
obtain the time at which the next timer will expire. */
xNextExpireTime = prvGetNextExpireTime( &xListWasEmpty );
/* If a timer has expired, process it. Otherwise, block this task
until either a timer does expire, or a command is received. */
prvProcessTimerOrBlockTask( xNextExpireTime, xListWasEmpty );
/* Empty the command queue. */
prvProcessReceivedCommands();
}
}
/*-----------------------------------------------------------*/
static void prvProcessTimerOrBlockTask( const TickType_t xNextExpireTime, BaseType_t xListWasEmpty )
{
TickType_t xTimeNow;
BaseType_t xTimerListsWereSwitched;
vTaskSuspendAll();
{
/* Obtain the time now to make an assessment as to whether the timer
has expired or not. If obtaining the time causes the lists to switch
then don't process this timer as any timers that remained in the list
when the lists were switched will have been processed within the
prvSampleTimeNow() function. */
xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );
if( xTimerListsWereSwitched == pdFALSE )
{
/* The tick count has not overflowed, has the timer expired? */
if( ( xListWasEmpty == pdFALSE ) && ( xNextExpireTime <= xTimeNow ) )
{
( void ) xTaskResumeAll();
prvProcessExpiredTimer( xNextExpireTime, xTimeNow );
}
else
{
/* The tick count has not overflowed, and the next expire
time has not been reached yet. This task should therefore
block to wait for the next expire time or a command to be
received - whichever comes first. The following line cannot
be reached unless xNextExpireTime > xTimeNow, except in the
case when the current timer list is empty. */
if( xListWasEmpty != pdFALSE )
{
/* The current timer list is empty - is the overflow list
also empty? */
xListWasEmpty = listLIST_IS_EMPTY( pxOverflowTimerList );
}
vQueueWaitForMessageRestricted( xTimerQueue, ( xNextExpireTime - xTimeNow ), xListWasEmpty );
if( xTaskResumeAll() == pdFALSE )
{
/* Yield to wait for either a command to arrive, or the
block time to expire. If a command arrived between the
critical section being exited and this yield then the yield
will not cause the task to block. */
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
( void ) xTaskResumeAll();
}
}
}
/*-----------------------------------------------------------*/
static TickType_t prvGetNextExpireTime( BaseType_t * const pxListWasEmpty )
{
TickType_t xNextExpireTime;
/* Timers are listed in expiry time order, with the head of the list
referencing the task that will expire first. Obtain the time at which
the timer with the nearest expiry time will expire. If there are no
active timers then just set the next expire time to 0. That will cause
this task to unblock when the tick count overflows, at which point the
timer lists will be switched and the next expiry time can be
re-assessed. */
*pxListWasEmpty = listLIST_IS_EMPTY( pxCurrentTimerList );
if( *pxListWasEmpty == pdFALSE )
{
xNextExpireTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxCurrentTimerList );
}
else
{
/* Ensure the task unblocks when the tick count rolls over. */
xNextExpireTime = ( TickType_t ) 0U;
}
return xNextExpireTime;
}
/*-----------------------------------------------------------*/
static TickType_t prvSampleTimeNow( BaseType_t * const pxTimerListsWereSwitched )
{
TickType_t xTimeNow;
PRIVILEGED_INITIALIZED_DATA static TickType_t xLastTime = ( TickType_t ) 0U; /*lint !e956 Variable is only accessible to one task. */
xTimeNow = xTaskGetTickCount();
if( xTimeNow < xLastTime )
{
prvSwitchTimerLists();
*pxTimerListsWereSwitched = pdTRUE;
}
else
{
*pxTimerListsWereSwitched = pdFALSE;
}
xLastTime = xTimeNow;
return xTimeNow;
}
/*-----------------------------------------------------------*/
static BaseType_t prvInsertTimerInActiveList( Timer_t * const pxTimer, const TickType_t xNextExpiryTime, const TickType_t xTimeNow, const TickType_t xCommandTime )
{
BaseType_t xProcessTimerNow = pdFALSE;
listSET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ), xNextExpiryTime );
listSET_LIST_ITEM_OWNER( &( pxTimer->xTimerListItem ), pxTimer );
if( xNextExpiryTime <= xTimeNow )
{
/* Has the expiry time elapsed between the command to start/reset a
timer was issued, and the time the command was processed? */
if( ( ( TickType_t ) ( xTimeNow - xCommandTime ) ) >= pxTimer->xTimerPeriodInTicks ) /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
{
/* The time between a command being issued and the command being
processed actually exceeds the timers period. */
xProcessTimerNow = pdTRUE;
}
else
{
vListInsert( pxOverflowTimerList, &( pxTimer->xTimerListItem ) );
}
}
else
{
if( ( xTimeNow < xCommandTime ) && ( xNextExpiryTime >= xCommandTime ) )
{
/* If, since the command was issued, the tick count has overflowed
but the expiry time has not, then the timer must have already passed
its expiry time and should be processed immediately. */
xProcessTimerNow = pdTRUE;
}
else
{
vListInsert( pxCurrentTimerList, &( pxTimer->xTimerListItem ) );
}
}
return xProcessTimerNow;
}
/*-----------------------------------------------------------*/
static void prvProcessReceivedCommands( void )
{
DaemonTaskMessage_t xMessage;
Timer_t *pxTimer;
BaseType_t xTimerListsWereSwitched, xResult;
TickType_t xTimeNow;
while( xQueueReceive( xTimerQueue, &xMessage, tmrNO_DELAY ) != pdFAIL ) /*lint !e603 xMessage does not have to be initialised as it is passed out, not in, and it is not used unless xQueueReceive() returns pdTRUE. */
{
#if ( INCLUDE_xTimerPendFunctionCall == 1 )
{
/* Negative commands are pended function calls rather than timer
commands. */
if( xMessage.xMessageID < ( BaseType_t ) 0 )
{
const CallbackParameters_t * const pxCallback = &( xMessage.u.xCallbackParameters );
/* The timer uses the xCallbackParameters member to request a
callback be executed. Check the callback is not NULL. */
configASSERT( pxCallback );
/* Call the function. */
pxCallback->pxCallbackFunction( pxCallback->pvParameter1, pxCallback->ulParameter2 );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* INCLUDE_xTimerPendFunctionCall */
/* Commands that are positive are timer commands rather than pended
function calls. */
if( xMessage.xMessageID >= ( BaseType_t ) 0 )
{
/* The messages uses the xTimerParameters member to work on a
software timer. */
pxTimer = xMessage.u.xTimerParameters.pxTimer;
if( listIS_CONTAINED_WITHIN( NULL, &( pxTimer->xTimerListItem ) ) == pdFALSE )
{
/* The timer is in a list, remove it. */
( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceTIMER_COMMAND_RECEIVED( pxTimer, xMessage.xMessageID, xMessage.u.xTimerParameters.xMessageValue );
/* In this case the xTimerListsWereSwitched parameter is not used, but
it must be present in the function call. prvSampleTimeNow() must be
called after the message is received from xTimerQueue so there is no
possibility of a higher priority task adding a message to the message
queue with a time that is ahead of the timer daemon task (because it
pre-empted the timer daemon task after the xTimeNow value was set). */
xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );
switch( xMessage.xMessageID )
{
case tmrCOMMAND_START :
case tmrCOMMAND_START_FROM_ISR :
case tmrCOMMAND_RESET :
case tmrCOMMAND_RESET_FROM_ISR :
case tmrCOMMAND_START_DONT_TRACE :
/* Start or restart a timer. */
if( prvInsertTimerInActiveList( pxTimer, xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, xTimeNow, xMessage.u.xTimerParameters.xMessageValue ) != pdFALSE )
{
/* The timer expired before it was added to the active
timer list. Process it now. */
pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
traceTIMER_EXPIRED( pxTimer );
if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
{
xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, NULL, tmrNO_DELAY );
configASSERT( xResult );
( void ) xResult;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
break;
case tmrCOMMAND_STOP :
case tmrCOMMAND_STOP_FROM_ISR :
/* The timer has already been removed from the active list.
There is nothing to do here. */
break;
case tmrCOMMAND_CHANGE_PERIOD :
case tmrCOMMAND_CHANGE_PERIOD_FROM_ISR :
pxTimer->xTimerPeriodInTicks = xMessage.u.xTimerParameters.xMessageValue;
configASSERT( ( pxTimer->xTimerPeriodInTicks > 0 ) );
/* The new period does not really have a reference, and can
be longer or shorter than the old one. The command time is
therefore set to the current time, and as the period cannot
be zero the next expiry time can only be in the future,
meaning (unlike for the xTimerStart() case above) there is
no fail case that needs to be handled here. */
( void ) prvInsertTimerInActiveList( pxTimer, ( xTimeNow + pxTimer->xTimerPeriodInTicks ), xTimeNow, xTimeNow );
break;
case tmrCOMMAND_DELETE :
/* The timer has already been removed from the active list,
just free up the memory if the memory was dynamically
allocated. */
#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
{
/* The timer can only have been allocated dynamically -
free it again. */
vPortFree( pxTimer );
}
#elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
{
/* The timer could have been allocated statically or
dynamically, so check before attempting to free the
memory. */
if( pxTimer->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
{
vPortFree( pxTimer );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
break;
default :
/* Don't expect to get here. */
break;
}
}
}
}
/*-----------------------------------------------------------*/
static void prvSwitchTimerLists( void )
{
TickType_t xNextExpireTime, xReloadTime;
List_t *pxTemp;
Timer_t *pxTimer;
BaseType_t xResult;
/* The tick count has overflowed. The timer lists must be switched.
If there are any timers still referenced from the current timer list
then they must have expired and should be processed before the lists
are switched. */
while( listLIST_IS_EMPTY( pxCurrentTimerList ) == pdFALSE )
{
xNextExpireTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxCurrentTimerList );
/* Remove the timer from the list. */
pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );
( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
traceTIMER_EXPIRED( pxTimer );
/* Execute its callback, then send a command to restart the timer if
it is an auto-reload timer. It cannot be restarted here as the lists
have not yet been switched. */
pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
{
/* Calculate the reload value, and if the reload value results in
the timer going into the same timer list then it has already expired
and the timer should be re-inserted into the current list so it is
processed again within this loop. Otherwise a command should be sent
to restart the timer to ensure it is only inserted into a list after
the lists have been swapped. */
xReloadTime = ( xNextExpireTime + pxTimer->xTimerPeriodInTicks );
if( xReloadTime > xNextExpireTime )
{
listSET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ), xReloadTime );
listSET_LIST_ITEM_OWNER( &( pxTimer->xTimerListItem ), pxTimer );
vListInsert( pxCurrentTimerList, &( pxTimer->xTimerListItem ) );
}
else
{
xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
configASSERT( xResult );
( void ) xResult;
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
pxTemp = pxCurrentTimerList;
pxCurrentTimerList = pxOverflowTimerList;
pxOverflowTimerList = pxTemp;
}
/*-----------------------------------------------------------*/
static void prvCheckForValidListAndQueue( void )
{
/* Check that the list from which active timers are referenced, and the
queue used to communicate with the timer service, have been
initialised. */
taskENTER_CRITICAL();
{
if( xTimerQueue == NULL )
{
vListInitialise( &xActiveTimerList1 );
vListInitialise( &xActiveTimerList2 );
pxCurrentTimerList = &xActiveTimerList1;
pxOverflowTimerList = &xActiveTimerList2;
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
{
/* The timer queue is allocated statically in case
configSUPPORT_DYNAMIC_ALLOCATION is 0. */
static StaticQueue_t xStaticTimerQueue;
static uint8_t ucStaticTimerQueueStorage[ configTIMER_QUEUE_LENGTH * sizeof( DaemonTaskMessage_t ) ];
xTimerQueue = xQueueCreateStatic( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, sizeof( DaemonTaskMessage_t ), &( ucStaticTimerQueueStorage[ 0 ] ), &xStaticTimerQueue );
}
#else
{
xTimerQueue = xQueueCreate( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, sizeof( DaemonTaskMessage_t ) );
}
#endif
#if ( configQUEUE_REGISTRY_SIZE > 0 )
{
if( xTimerQueue != NULL )
{
vQueueAddToRegistry( xTimerQueue, "TmrQ" );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configQUEUE_REGISTRY_SIZE */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer )
{
BaseType_t xTimerIsInActiveList;
Timer_t *pxTimer = ( Timer_t * ) xTimer;
configASSERT( xTimer );
/* Is the timer in the list of active timers? */
taskENTER_CRITICAL();
{
/* Checking to see if it is in the NULL list in effect checks to see if
it is referenced from either the current or the overflow timer lists in
one go, but the logic has to be reversed, hence the '!'. */
xTimerIsInActiveList = ( BaseType_t ) !( listIS_CONTAINED_WITHIN( NULL, &( pxTimer->xTimerListItem ) ) );
}
taskEXIT_CRITICAL();
return xTimerIsInActiveList;
} /*lint !e818 Can't be pointer to const due to the typedef. */
/*-----------------------------------------------------------*/
void *pvTimerGetTimerID( const TimerHandle_t xTimer )
{
Timer_t * const pxTimer = ( Timer_t * ) xTimer;
void *pvReturn;
configASSERT( xTimer );
taskENTER_CRITICAL();
{
pvReturn = pxTimer->pvTimerID;
}
taskEXIT_CRITICAL();
return pvReturn;
}
/*-----------------------------------------------------------*/
void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID )
{
Timer_t * const pxTimer = ( Timer_t * ) xTimer;
configASSERT( xTimer );
taskENTER_CRITICAL();
{
pxTimer->pvTimerID = pvNewID;
}
taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
#if( INCLUDE_xTimerPendFunctionCall == 1 )
BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken )
{
DaemonTaskMessage_t xMessage;
BaseType_t xReturn;
/* Complete the message with the function parameters and post it to the
daemon task. */
xMessage.xMessageID = tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR;
xMessage.u.xCallbackParameters.pxCallbackFunction = xFunctionToPend;
xMessage.u.xCallbackParameters.pvParameter1 = pvParameter1;
xMessage.u.xCallbackParameters.ulParameter2 = ulParameter2;
xReturn = xQueueSendFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
tracePEND_FUNC_CALL_FROM_ISR( xFunctionToPend, pvParameter1, ulParameter2, xReturn );
return xReturn;
}
#endif /* INCLUDE_xTimerPendFunctionCall */
/*-----------------------------------------------------------*/
#if( INCLUDE_xTimerPendFunctionCall == 1 )
BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait )
{
DaemonTaskMessage_t xMessage;
BaseType_t xReturn;
/* This function can only be called after a timer has been created or
after the scheduler has been started because, until then, the timer
queue does not exist. */
configASSERT( xTimerQueue );
/* Complete the message with the function parameters and post it to the
daemon task. */
xMessage.xMessageID = tmrCOMMAND_EXECUTE_CALLBACK;
xMessage.u.xCallbackParameters.pxCallbackFunction = xFunctionToPend;
xMessage.u.xCallbackParameters.pvParameter1 = pvParameter1;
xMessage.u.xCallbackParameters.ulParameter2 = ulParameter2;
xReturn = xQueueSendToBack( xTimerQueue, &xMessage, xTicksToWait );
tracePEND_FUNC_CALL( xFunctionToPend, pvParameter1, ulParameter2, xReturn );
return xReturn;
}
#endif /* INCLUDE_xTimerPendFunctionCall */
/*-----------------------------------------------------------*/
/* This entire source file will be skipped if the application is not configured
to include software timer functionality. If you want to include software timer
functionality then ensure configUSE_TIMERS is set to 1 in FreeRTOSConfig.h. */
#endif /* configUSE_TIMERS == 1 */
/**
******************************************************************************
* File Name : ADC.c
* Description : This file provides code for the configuration
* of the ADC instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "adc.h"
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
ADC_HandleTypeDef hadc1;
/* ADC1 init function */
void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
/**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/* ADC1 clock enable */
__HAL_RCC_ADC1_CLK_ENABLE();
/**ADC1 GPIO Configuration
PC0 ------> ADC1_IN10
*/
GPIO_InitStruct.Pin = HB_Current_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(HB_Current_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
}
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC1_CLK_DISABLE();
/**ADC1 GPIO Configuration
PC0 ------> ADC1_IN10
*/
HAL_GPIO_DeInit(HB_Current_GPIO_Port, HB_Current_Pin);
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : CAN.c
* Description : This file provides code for the configuration
* of the CAN instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "can.h"
#include "gpio.h"
/* USER CODE BEGIN 0 */
#include "canid.h"
#include "FreeRTOS.h"
#include "drive.h"
#include "utils.h"
#include "cmsis_os.h"
#include "math.h"
#include "debug.h"
#include "string.h"
extern struct requested_car_parameters g_requested_data;
extern struct car_ecu_parameters g_car_ecu;
extern struct my_car_parameters g_my_car;
UART_HandleTypeDef huart1;
//extern osSemaphoreId GBBinarySemHandle;
//extern osSemaphoreId GasBinarySemHandle;
//extern osSemaphoreId BreakBinarySemHandle;
//extern osSemaphoreId WheelBinarySemHandle;
/* USER CODE END 0 */
CAN_HandleTypeDef hcan1;
CAN_HandleTypeDef hcan2;
/* CAN1 init function */
void MX_CAN1_Init(void)
{
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 8;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SJW = CAN_SJW_1TQ;
hcan1.Init.BS1 = CAN_BS1_2TQ;
hcan1.Init.BS2 = CAN_BS2_7TQ;
hcan1.Init.TTCM = DISABLE;
hcan1.Init.ABOM = DISABLE;
hcan1.Init.AWUM = DISABLE;
hcan1.Init.NART = DISABLE;
hcan1.Init.RFLM = DISABLE;
hcan1.Init.TXFP = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* CAN2 init function */
void MX_CAN2_Init(void)
{
hcan2.Instance = CAN2;
hcan2.Init.Prescaler = 8;
hcan2.Init.Mode = CAN_MODE_NORMAL;
hcan2.Init.SJW = CAN_SJW_1TQ;
hcan2.Init.BS1 = CAN_BS1_2TQ;
hcan2.Init.BS2 = CAN_BS2_7TQ;
hcan2.Init.TTCM = DISABLE;
hcan2.Init.ABOM = DISABLE;
hcan2.Init.AWUM = DISABLE;
hcan2.Init.NART = DISABLE;
hcan2.Init.RFLM = DISABLE;
hcan2.Init.TXFP = DISABLE;
if (HAL_CAN_Init(&hcan2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
static uint32_t HAL_RCC_CAN1_CLK_ENABLED=0;
void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(canHandle->Instance==CAN1)
{
/* USER CODE BEGIN CAN1_MspInit 0 */
/* USER CODE END CAN1_MspInit 0 */
/* CAN1 clock enable */
HAL_RCC_CAN1_CLK_ENABLED++;
if(HAL_RCC_CAN1_CLK_ENABLED==1){
__HAL_RCC_CAN1_CLK_ENABLE();
}
/**CAN1 GPIO Configuration
PA11 ------> CAN1_RX
PA12 ------> CAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_CAN1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* CAN1 interrupt Init */
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
/* USER CODE BEGIN CAN1_MspInit 1 */
CAN1ConfigFilters();
HAL_CAN_Receive_IT(&hcan1, CAN_FIFO0);
/* USER CODE END CAN1_MspInit 1 */
}
else if(canHandle->Instance==CAN2)
{
/* USER CODE BEGIN CAN2_MspInit 0 */
/* USER CODE END CAN2_MspInit 0 */
/* CAN2 clock enable */
__HAL_RCC_CAN2_CLK_ENABLE();
HAL_RCC_CAN1_CLK_ENABLED++;
if(HAL_RCC_CAN1_CLK_ENABLED==1){
__HAL_RCC_CAN1_CLK_ENABLE();
}
/**CAN2 GPIO Configuration
PB5 ------> CAN2_RX
PB6 ------> CAN2_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_CAN2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* CAN2 interrupt Init */
HAL_NVIC_SetPriority(CAN2_TX_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
/* USER CODE BEGIN CAN2_MspInit 1 */
CAN2ConfigFilters();
HAL_CAN_Receive_IT(&hcan2, CAN_FIFO0);
/* USER CODE END CAN2_MspInit 1 */
}
}
void HAL_CAN_MspDeInit(CAN_HandleTypeDef* canHandle)
{
if(canHandle->Instance==CAN1)
{
/* USER CODE BEGIN CAN1_MspDeInit 0 */
/* USER CODE END CAN1_MspDeInit 0 */
/* Peripheral clock disable */
/* Be sure that all peripheral instances that share the same clock need to be disabled */
/** HAL_RCC_CAN1_CLK_ENABLED--;
* if(HAL_RCC_CAN1_CLK_ENABLED==0){
* __HAL_RCC_CAN1_CLK_DISABLE();
**/
/**CAN1 GPIO Configuration
PA11 ------> CAN1_RX
PA12 ------> CAN1_TX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* CAN1 interrupt Deinit */
HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_SCE_IRQn);
/* USER CODE BEGIN CAN1_MspDeInit 1 */
/* USER CODE END CAN1_MspDeInit 1 */
}
else if(canHandle->Instance==CAN2)
{
/* USER CODE BEGIN CAN2_MspDeInit 0 */
/* USER CODE END CAN2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_CAN2_CLK_DISABLE();
/* Be sure that all peripheral instances that share the same clock need to be disabled */
/** HAL_RCC_CAN1_CLK_ENABLED--;
* if(HAL_RCC_CAN1_CLK_ENABLED==0){
* __HAL_RCC_CAN1_CLK_DISABLE();
**/
/**CAN2 GPIO Configuration
PB5 ------> CAN2_RX
PB6 ------> CAN2_TX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_5|GPIO_PIN_6);
/* CAN2 interrupt Deinit */
HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_SCE_IRQn);
/* USER CODE BEGIN CAN2_MspDeInit 1 */
/* USER CODE END CAN2_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/*
* @brief
* @retval none
*/
void CAN1ConfigFilters(void) {
CAN_FilterConfTypeDef s_filter_config;
hcan1.Instance = CAN1;
//If these typedefs not used, can wont work correctly
CanTxMsgTypeDef txMsg;
CanRxMsgTypeDef rxMsg;
CanRxMsgTypeDef rx1Msg;
s_filter_config.FilterNumber = 0; // 0-27
s_filter_config.FilterMode = CAN_FILTERMODE_IDMASK; // Use ID masking
s_filter_config.FilterScale = CAN_FILTERSCALE_32BIT; // Use either 16 or 32 bit scale.
s_filter_config.FilterIdHigh = 0; // Use all 0-s to recive all IDs
s_filter_config.FilterIdLow = 0; // ***
s_filter_config.FilterMaskIdHigh = 0; // ***
s_filter_config.FilterMaskIdLow =0; // ***
s_filter_config.FilterFIFOAssignment = CAN_FIFO0; // CAN_FIFO0 or CANFIFO1
s_filter_config.BankNumber = 0; // 0-28
s_filter_config.FilterActivation = ENABLE; // Must enable filter
if(HAL_CAN_ConfigFilter(&hcan1, &s_filter_config) != HAL_OK) {
// Filter configuration Error
Error_Handler();
}
hcan1.pRxMsg = &rxMsg;
hcan1.pRx1Msg = &rx1Msg;
hcan1.pTxMsg = &txMsg;
hcan1.pTxMsg->StdId = 0x001;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->DLC = 8;
}
/*
* @brief
* @param None
* @retval None
*/
void CAN2ConfigFilters(void) {
CAN_FilterConfTypeDef s_filter_config;
hcan2.Instance = CAN2;
//If these typedefs not used, can wont work correctly
CanTxMsgTypeDef txMsg;
CanRxMsgTypeDef rxMsg;
CanRxMsgTypeDef rx1Msg;
s_filter_config.FilterNumber = 0; // 0-27
s_filter_config.FilterMode = CAN_FILTERMODE_IDMASK; // Use ID masking
s_filter_config.FilterScale = CAN_FILTERSCALE_32BIT; // Use either 16 or 32 bit scale.
s_filter_config.FilterIdHigh = 0; // Use all 0-s to recive all IDs
s_filter_config.FilterIdLow = 0; // ***
s_filter_config.FilterMaskIdHigh = 0; // ***
s_filter_config.FilterMaskIdLow =0; // ***
s_filter_config.FilterFIFOAssignment = CAN_FIFO0; // CAN_FIFO0 or CANFIFO1
s_filter_config.BankNumber = 0; // 0-28
s_filter_config.FilterActivation = ENABLE; // Must enable filter
if(HAL_CAN_ConfigFilter(&hcan2, &s_filter_config) != HAL_OK) {
// Filter configuration Error
Error_Handler();
}
hcan2.pRxMsg = &rxMsg;
hcan2.pRx1Msg = &rx1Msg;
hcan2.pTxMsg = &txMsg;
hcan2.pTxMsg->StdId = 0x001;
hcan2.pTxMsg->IDE = CAN_ID_STD;
hcan2.pTxMsg->RTR = CAN_RTR_DATA;
hcan2.pTxMsg->DLC = 8;
}
/*
* @brief Transmission complete callback in non blocking mode
* @param can_handle: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval none
*/
void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* can_handle) {
//int counter = 0;
//long task_woken = 0;
//long task2_woken = 0;
uint32_t data_id = 0;
data_id = can_handle->pRxMsg->StdId;
#if DBG_ROS_SAFETY_BRAKE || DBG_ROS_VELOCITY || DBG_ROS_WHEEL
char txData[256];
#endif
if (can_handle->Instance == CAN1) {
HAL_GPIO_TogglePin(RGB_G_1_GPIO_Port, RGB_G_1_Pin);
switch (data_id) {
case CAN_ID_ROS_SAFETY_BRAKE:
g_requested_data.safety_brake = can_handle->pRxMsg->Data[0];
#if DBG_ROS_SAFETY_BRAKE
snprintf(txData, sizeof(txData), "Safety brake: CAN ID: %lu 0x%u",data_id,
g_requested_data.safety_brake);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
break;
case CAN_ID_ROS_VELOCITY:
char2float((char*)can_handle->pRxMsg->Data,&g_requested_data.velocity_ms);
#if DBG_ROS_VELOCITY
snprintf(txData, sizeof(txData), "Velocity: CAN ID: %lu 0x%u 0x%u 0x%u 0x%u", data_id,
can_handle->pRxMsg->Data[0], can_handle->pRxMsg->Data[1],
can_handle->pRxMsg->Data[2], can_handle->pRxMsg->Data[3]);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
break;
case CAN_ID_ROS_ST_WHEEL_ANGLE:
#if DBG_ROS_WHEEL
snprintf(txData, sizeof(txData), "Wheel angle: CAN ID: %lu 0x%u 0x%u 0x%u 0x%u", data_id,
can_handle->pRxMsg->Data[0], can_handle->pRxMsg->Data[1],
can_handle->pRxMsg->Data[2], can_handle->pRxMsg->Data[3]);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
char2float((char*)can_handle->pRxMsg->Data,&g_requested_data.wheel_angle);
break;
case CAN_ID_MOTOR_TEMP_RPM:
g_car_ecu.motor_rpm = (can_handle->pRxMsg->Data[6]*256 + can_handle->pRxMsg->Data[7]) - 10000;
g_my_car.speed_ms = g_car_ecu.motor_rpm / RPM_PER_KMH / 3.6f;
g_car_ecu.motor_temperatur = can_handle->pRxMsg->Data[2]-40;
break;
case CAN_ID_GAS:
g_car_ecu.gas_pedal = can_handle->pRxMsg->Data[3]*100/GAS_PEDAL_MAX_POS_ECU;
break;
case CAN_ID_ODOMETER:
g_car_ecu.odometer = can_handle->pRxMsg->Data[1]; // Data[0] for arduino <- fix arduino!
break;
case CAN_ID_STEERING_WHEEL:
g_car_ecu.steering_wheel = (((can_handle->pRxMsg->Data[0]*256)+can_handle->pRxMsg->Data[1]) - 4096)/2;
g_my_car.wheel_angle_rad = g_car_ecu.steering_wheel * PI / DEG180;
g_my_car.wheel_angle_deg = g_car_ecu.steering_wheel * 2;
break;
case CAN_ID_GEARBOX:
switch (can_handle->pRxMsg->Data[0]) {
case ECU_GEAR_P:
g_car_ecu.gear = GEAR_P;
break;
case ECU_GEAR_R:
g_car_ecu.gear = GEAR_R;
break;
case ECU_GEAR_N:
g_car_ecu.gear = GEAR_N;
break;
case ECU_GEAR_D:
g_car_ecu.gear = GEAR_D;
break;
case ECU_GEAR_U:
g_car_ecu.gear = GEAR_U;
break;
default:
g_car_ecu.gear = GEAR_E;
break;
}
break;
}
} else if (can_handle->Instance == CAN2) {
//HAL_GPIO_WritePin(RGB_B_1_GPIO_Port, RGB_B_1_Pin,GPIO_PIN_RESET);
HAL_GPIO_TogglePin(RGB_B_1_GPIO_Port, RGB_B_1_Pin);
switch (data_id) {
case CAN_ID_MOTOR_TEMP_RPM:
g_car_ecu.motor_rpm = (can_handle->pRxMsg->Data[6]*256 + can_handle->pRxMsg->Data[7]) - 10000;
g_car_ecu.motor_temperatur = can_handle->pRxMsg->Data[2]-40;
break;
case CAN_ID_GAS:
g_car_ecu.gas_pedal = can_handle->pRxMsg->Data[3]*100/GAS_PEDAL_MAX_POS_ECU;
break;
case CAN_ID_ODOMETER:
g_car_ecu.odometer = can_handle->pRxMsg->Data[1]; // 0 for arduino
break;
case CAN_ID_STEERING_WHEEL:
g_car_ecu.steering_wheel = (((can_handle->pRxMsg->Data[0]*256)+can_handle->pRxMsg->Data[1]) - 4096)/2;
break;
case CAN_ID_GEARBOX:
switch (can_handle->pRxMsg->Data[0]) {
case ECU_GEAR_P:
g_car_ecu.gear = GEAR_P;
break;
case ECU_GEAR_R:
g_car_ecu.gear = GEAR_R;
break;
case ECU_GEAR_N:
g_car_ecu.gear = GEAR_N;
break;
case ECU_GEAR_D:
g_car_ecu.gear = GEAR_D;
break;
default:
break;
}
}
} else {
printf("Error");
}
if(HAL_CAN_Receive_IT(can_handle, CAN_FIFO0) != HAL_OK) {
// Error_Handler(); /* Reception Error */
}
}
/**
* @brief Error CAN callback.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval none
*/
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan) {
//printf("%d\tCAN %d error 0x%0X\r\n",HAL_GetTick(), hcan->Instance, hcan->ErrorCode);
HAL_CAN_Init(hcan);
if (hcan->Instance == CAN1)
CAN1ConfigFilters();
HAL_CAN_Receive_IT(hcan, CAN_FIFO0);
//Error_Handler(); /* Reception Error */
}
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : DAC.c
* Description : This file provides code for the configuration
* of the DAC instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "dac.h"
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
DAC_HandleTypeDef hdac;
/* DAC init function */
void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig;
/**DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**DAC channel OUT1 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**DAC channel OUT2 config
*/
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
void HAL_DAC_MspInit(DAC_HandleTypeDef* dacHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(dacHandle->Instance==DAC)
{
/* USER CODE BEGIN DAC_MspInit 0 */
/* USER CODE END DAC_MspInit 0 */
/* DAC clock enable */
__HAL_RCC_DAC_CLK_ENABLE();
/**DAC GPIO Configuration
PA4 ------> DAC_OUT1
PA5 ------> DAC_OUT2
*/
GPIO_InitStruct.Pin = GAS_PEDAL_MAIN_Pin|GAS_PEDAL_SUB_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* DAC interrupt Init */
HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);
/* USER CODE BEGIN DAC_MspInit 1 */
/* USER CODE END DAC_MspInit 1 */
}
}
void HAL_DAC_MspDeInit(DAC_HandleTypeDef* dacHandle)
{
if(dacHandle->Instance==DAC)
{
/* USER CODE BEGIN DAC_MspDeInit 0 */
/* USER CODE END DAC_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_DAC_CLK_DISABLE();
/**DAC GPIO Configuration
PA4 ------> DAC_OUT1
PA5 ------> DAC_OUT2
*/
HAL_GPIO_DeInit(GPIOA, GAS_PEDAL_MAIN_Pin|GAS_PEDAL_SUB_Pin);
/* DAC interrupt Deinit */
HAL_NVIC_DisableIRQ(TIM6_DAC_IRQn);
/* USER CODE BEGIN DAC_MspDeInit 1 */
/* USER CODE END DAC_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#include "drive.h"
#include "utils.h"
#include "dac.h"
#include "FreeRTOS.h"
#include "task.h"
#include "can.h"
#include "canid.h"
#include "stdlib.h"
#include "string.h"
#include "debug.h"
extern struct car_ecu_parameters g_car_ecu;
extern struct requested_car_parameters g_requested_data;
extern struct pid_controller g_gas_controller;
extern struct pid_controller g_wheel_controller;
extern struct my_car_parameters g_my_car;
extern struct hb_controller g_hb_controller;
extern struct counters g_counters;
extern DAC_HandleTypeDef hdac;
extern CAN_HandleTypeDef hcan1;
extern ADC_HandleTypeDef hadc1;
extern TIM_HandleTypeDef htim4;
extern TIM_HandleTypeDef htim5;
extern TIM_HandleTypeDef htim2;
#if DBG_GAS_PEDAL || DBG_ST_WHEEL || DBG_GEAR || DBG_HANDBRAKE
extern UART_HandleTypeDef huart1;
#endif
/*
* @brief Executes gear change.
* @param uin8_t new_gear
* @retval none
*/
void executeGearChange(uint8_t new_gear) {
if (g_car_ecu.gear == new_gear) {
}
switch (new_gear) {
case GEAR_P:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_P;
break;
case GEAR_R:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_R_GPIO_Port, GEAR_R_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_R;
break;
case GEAR_N:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_N_GPIO_Port, GEAR_N_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_N;
break;
case GEAR_D:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_D_GPIO_Port, GEAR_D_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_D;
break;
/*case GEAR_B:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_B_GPIO_Port, GEAR_B_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_B;
break;
case GEAR_C:
HAL_GPIO_WritePin(GEAR_P_GPIO_Port, GEAR_P_Pin|GEAR_R_Pin|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GEAR_C_GPIO_Port, GEAR_C_Pin, GPIO_PIN_SET);
g_my_car.gear = GEAR_C;
break;*/
default:
break;//Needs to be defined
}
}
/*
* @brief Checks if gear change is possible and runs the execution functions if so.
* @param uint8_t new_gear -
* @retval uint8_t -
*/
uint8_t changeGear(uint8_t new_gear) {
//Check for MAX and MIN value
if (new_gear < MIN_GEAR || new_gear > MAX_GEAR) {
return GEAR_CHANGE_WRONG_GEAR_ERROR;
}
//Check if its allready gear wanted
if (new_gear == g_car_ecu.gear) {
return GEAR_CHANGE_READY;
}
//Motor rpm and odometery speed not zero
if (!g_car_ecu.motor_rpm && !g_car_ecu.odometer) {
executeGearChange(new_gear);
sendGear();
return GEAR_CHANGE_READY;
//motor and odometery speed not zero
} else if (g_car_ecu.motor_rpm && g_car_ecu.odometer) {
//TODO - brake car speed to zero
return RPM_ODOMETER_NOT_ZERO_ERROR;
//motor rpm not zero
} else if (g_car_ecu.motor_rpm) {
return RPM_NOT_ZERO_ERROR;
//odometry speed not zero
} else if (g_car_ecu.odometer) {
return ODOMETER_SPEED_NOT_ZERO_ERROR;
}
return GEAR_CHANGE_ERROR;
}
/*
* @brief Changes car speed to requested speed
* @param none
* @retval none
*/
void changeSpeed(void) {
int difference = 0;
int allowed = MAX10;
int rpm = 0;
float f_rpm = 0;
int dac_output = MIN_GAS_PEDAL_DAC_VALUE;
g_gas_controller.delay = HAL_GetTick() - g_gas_controller.lastTick;
if (g_gas_controller.delay < 1) { //to not let divide with 0
return;
}
g_gas_controller.lastTick = HAL_GetTick();
g_requested_data.velocity_kmh = convertMStoKMH(g_requested_data.velocity_ms);
//setpoint check and integral reseting
if (g_requested_data.last_velocity_kmh != g_requested_data.velocity_kmh) {
g_gas_controller.integral = 0;
}
g_requested_data.last_velocity_kmh = g_requested_data.velocity_kmh;
//PID calculations
if (g_requested_data.velocity_kmh <= SPEED_10) {
allowed = MAX10;
} else if (g_requested_data.velocity_kmh <= SPEED_15) {
allowed = MAX15;
} else {
allowed = MAX20;
}
//Calculate requested speed to RPM
f_rpm = g_requested_data.velocity_kmh*RPM_PER_KMH;
if (rpm > 0) {
rpm = f_rpm + 0.5f;
} else if (rpm < 0) {
rpm = f_rpm - 0.5f;
}
calculateGasControllerPID(rpm);
dac_output = g_gas_controller.output; // For brakes, we need to know calculated dac output, so we save it here
//Min gas pedal DAC value check
if (g_gas_controller.output < MIN_GAS_PEDAL_DAC_VALUE) {
g_gas_controller.output = MIN_GAS_PEDAL_DAC_VALUE;
//if we don't need to use gas pedal, we still need to set its min values
g_my_car.gas_pedal_pid_output = g_gas_controller.output;
setGasPedalDACOutput();
}
//Gets handbrake current
if (HAL_ADC_PollForConversion(&hadc1, 1) == HAL_OK) {
g_hb_controller.current = HAL_ADC_GetValue(&hadc1) - 2048;
}
// Don't start braking, if gas pedal dac output is only little smaller than expected
if (dac_output < (MIN_GAS_PEDAL_DAC_VALUE - 300)) {
g_hb_controller.setpoint = MIN_GAS_PEDAL_DAC_VALUE-300-dac_output * HB_RANGE/HB_ADC_RANGE;
if (g_hb_controller.setpoint < 0) {
g_hb_controller.setpoint = 0;
}
if (g_hb_controller.setpoint > HB_RANGE) {
g_hb_controller.setpoint = HB_RANGE;
}
}
else {
g_hb_controller.setpoint = 0;
}
//Get HB position
g_hb_controller.position = TIM4->CNT; //tim4 cnt holds handbrake encoder position
g_hb_controller.delay = HAL_GetTick() - g_hb_controller.lastTick;
if (g_hb_controller.delay > 0) {
g_hb_controller.lastTick = HAL_GetTick();
calculateHBControllerPID();
//Check if over current limit
if (g_hb_controller.current > HB_CURRENT_LIMIT) {
g_hb_controller.output = 0;
}
setHandbrakePWMOutput();
sendHandbrake();
}
if (g_gas_controller.output > allowed) {
g_gas_controller.output = allowed;
}
difference = g_gas_controller.output - g_my_car.gas_pedal_pid_output;
if (difference < -MAX_GAS_PEDAL_ALLOWED_DIFF) {
g_gas_controller.output = g_my_car.gas_pedal_pid_output - MAX_GAS_PEDAL_ALLOWED_DIFF;
} else if (difference > MAX_GAS_PEDAL_ALLOWED_DIFF) {
g_gas_controller.output = g_my_car.gas_pedal_pid_output + MAX_GAS_PEDAL_ALLOWED_DIFF;
}
g_gas_controller.previous_error = g_gas_controller.error;
g_my_car.gas_pedal_pid_output = g_gas_controller.output;
setGasPedalDACOutput();
sendGasPedal();
}
/*
* @brief Changes car wheel angle to requested angle
* @param none
* @retval none
*/
void changeWheelAngle(void) {
//Calculates wheel angel in float
g_requested_data.wheel_angle_deg = convertRADtoFLOAT(g_requested_data.wheel_angle);
g_wheel_controller.delay = HAL_GetTick() - g_wheel_controller.lastTick; // Delay calculation
if (g_wheel_controller.delay < 1) { //to not let divide with 0
return;
}
g_wheel_controller.lastTick = HAL_GetTick();
//Setpoint check and integral reseting if setpoint changes
if (g_requested_data.last_wheel_angle != g_requested_data.wheel_angle_deg) {
g_wheel_controller.integral = 0;
}
g_requested_data.last_wheel_angle = g_requested_data.wheel_angle_deg;
calculateWheelControllerPID();
setSteeringWheelPWMOutput();
sendSteeringWheel();
}
/*
* @brief Sends current gearbox status to master controller
* @param none
* @reval none
*/
void sendGear(void) {
#if DBG_GEAR
char txData[256];
#endif
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_GEARBOX;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->DLC = 1;
hcan1.pTxMsg->Data[0] = g_my_car.gear;
//HAL_CAN_Transmit_IT(&hcan1);
#if DBG_GEAR
snprintf(txData, sizeof(txData), "Gear sent. Current gear: %u\n\r", txData, g_my_car.gear);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
}
/*
* @brief
* @param
* @retval
*/
void setGasPedalDACOutput(void) {
if (HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_1, DAC_ALIGN_12B_R, g_gas_controller.output) != HAL_OK) {
Error_Handler();
}
if (HAL_DAC_SetValue(&hdac, DAC1_CHANNEL_2, DAC_ALIGN_12B_R, g_gas_controller.output / 2) != HAL_OK) {
Error_Handler();
}
}
/*
* @brief Sends current gas pedal position DAC output
* @param none
* @retval none
*/
void sendGasPedal(void) {
char *speed = (char *)&g_my_car.speed_ms; // converts float to char array
#if DBG_GAS_PEDAL
char txData[256];
#endif
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_SPEED;
hcan1.pTxMsg->DLC = CAN_ID_DRIVE_SPEED_LEN;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->Data[0] = speed[0]; //Speed ms
hcan1.pTxMsg->Data[1] = speed[1]; //Speed ms
hcan1.pTxMsg->Data[2] = speed[2]; //Speed ms
hcan1.pTxMsg->Data[3] = speed[3]; //Speed ms
hcan1.pTxMsg->Data[4] = g_car_ecu.motor_rpm>>8; //Motor rpm
hcan1.pTxMsg->Data[5] = g_car_ecu.motor_rpm; //Motor rpm
hcan1.pTxMsg->Data[6] = g_car_ecu.odometer; //Odo speed
hcan1.pTxMsg->Data[7] = g_counters.speed; //Counter
//HAL_CAN_Transmit_IT(&hcan1);
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_GAS_PEDAL;
hcan1.pTxMsg->DLC = CAN_ID_DRIVE_GAS_PEDAL_LEN;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->Data[0] = (g_my_car.gas_pedal_pid_output - MIN_GAS_PEDAL_DAC_VALUE) * 64 / MAX_GAS_PEDAL_POS_VALUE; //64 as 64% maximum <- position in percents
hcan1.pTxMsg->Data[1] = g_my_car.gas_pedal_pid_output>>8; //dac output high bits
hcan1.pTxMsg->Data[2] = g_my_car.gas_pedal_pid_output; //dac output low bits
hcan1.pTxMsg->Data[3] = g_counters.gas_pedal; //Counter
//HAL_CAN_Transmit_IT(&hcan1);
#if DBG_GAS_PEDAL
snprintf(txData, sizeof(txData), "Gas pedal sent. Odometer: %u Motor RPM: %lu "
"PID output: %lu \n\r", g_car_ecu.odometer,g_car_ecu.motor_rpm,
g_my_car.gas_pedal_pid_output);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
}
/*
* @brief Sends steering wheel position and main and sub signal DAC output values.
* @param none
* @retval none
*/
void sendSteeringWheel(void) {
char *wheel_rad = (char *)&g_my_car.wheel_angle_rad;
#if DBG_ST_WHEEL
char txData[256];
#endif
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_WHEEL_POSITION;
hcan1.pTxMsg->DLC = CAN_ID_DRIVE_WHEEL_POSITION_LEN;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->Data[0] = wheel_rad[0]; // Wheel pos in rad
hcan1.pTxMsg->Data[1] = wheel_rad[1]; // Wheel pos in rad
hcan1.pTxMsg->Data[2] = wheel_rad[2]; // Wheel pos in rad
hcan1.pTxMsg->Data[3] = wheel_rad[3]; // Wheel pos in rad
hcan1.pTxMsg->Data[4] = g_my_car.wheel_angle_deg>>8; // Wheel pos in deg
hcan1.pTxMsg->Data[5] = g_my_car.wheel_angle_deg; // Wheel pos in deg
hcan1.pTxMsg->Data[6] = g_counters.st_wheel; // Counter
//HAL_CAN_Transmit_IT(&hcan1);
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_STEERING_PID;
hcan1.pTxMsg->DLC = CAN_ID_DRIVE_STEERING_PID_LEN;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->Data[0] = g_my_car.steering_wheel_pwm>>16; // Wheel pid output
hcan1.pTxMsg->Data[1] = g_my_car.steering_wheel_pwm>>8; // Wheel pid output
hcan1.pTxMsg->Data[2] = g_my_car.steering_wheel_pwm; // Wheel pid output
hcan1.pTxMsg->Data[3] = g_counters.st_wheel_pid; // Counter
//HAL_CAN_Transmit_IT(&hcan1);
#if DBG_ST_WHEEL
snprintf(txData, sizeof(txData), "Wheel sent. Wheel angle deg: %d "
"St wheel PWM: %lu\n\r", g_my_car.wheel_angle_deg, g_my_car.steering_wheel_pwm);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
}
void sendHandbrake(void) {
#if DBG_HANDBRAKE
char txData[256];
#endif
hcan1.pTxMsg->StdId = CAN_ID_DRIVE_HANDBRAKE;
hcan1.pTxMsg->DLC = CAN_ID_DRIVE_HANDBRAKE_LEN;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->Data[0] = g_hb_controller.output>>8; //Speed ms
hcan1.pTxMsg->Data[1] = g_hb_controller.output; //Speed ms
hcan1.pTxMsg->Data[2] = g_hb_controller.position>>8;//Speed ms
hcan1.pTxMsg->Data[3] = g_hb_controller.position; //Speed ms
hcan1.pTxMsg->Data[4] = g_counters.handbrake;
//HAL_CAN_Transmit_IT(&hcan1);
#if DBG_HANDBRAKE
snprintf(txData, sizeof(txData), "Handbrake sent. PID output: "
"%d Position: %u\n\r", g_hb_controller.output, g_hb_controller.position);
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
#endif
}
/*
* @brief Sets PWM output to control steering wheel
* @param None
* @retval None
*/
void setSteeringWheelPWMOutput(void) {
TIM2->CCR2 = g_wheel_controller.output;
}
/*
* @brief Sets starting parameters ...
* @param none
* @retval none
*/
void setStartingParameters(void) {
//Car ECU
g_car_ecu.gear = GEAR_P;
g_car_ecu.motor_temperatur = 0;
g_car_ecu.motor_rpm = 0;
g_car_ecu.odometer = 0;
g_car_ecu.gas_pedal = 0;
g_car_ecu.steering_wheel = 0;
//My Car
g_my_car.gas_pedal_pid_output = 0;
g_my_car.speed_ms = 0.0f;
g_my_car.gear = GEAR_P;
g_my_car.wheel_angle_rad = 0.0f;
g_my_car.wheel_angle_deg = 0.0f;
g_my_car.steering_wheel_pwm = 0;
g_my_car.safety_brake = SAFETY_BRAKE_ON;
//Requested
g_requested_data.velocity_ms = 0.0f;
g_requested_data.velocity_kmh = 0.0f;
g_requested_data.last_velocity_kmh = 0.0f;
g_requested_data.wheel_angle = 0.0f;
g_requested_data.wheel_angle_deg = 0.0f;
g_requested_data.last_wheel_angle = 0.0f;
g_requested_data.safety_brake = SAFETY_BRAKE_ON;
//Counters
g_counters.st_wheel = 0;
g_counters.st_wheel_pid = 0;
g_counters.gearbox = 0;
g_counters.speed = 0;
g_counters.gas_pedal = 0;
g_counters.safety_brake = 0;
g_counters.handbrake = 0;
//Gas pedal PID
g_gas_controller.kp = GAS_PEDAL_KP;
g_gas_controller.ki = GAS_PEDAL_KI;
g_gas_controller.kd = GAS_PEDAL_KD;
g_gas_controller.error = 0;
g_gas_controller.integral = 0;
g_gas_controller.derivative = 0.0f;
g_gas_controller.output = MIN_GAS_PEDAL_DAC_VALUE;
//Steering wheel PID
g_wheel_controller.kp = STEERING_WHEEL_KP;
g_wheel_controller.ki = STEERING_WHEEL_KI;
g_wheel_controller.kd = STEERING_WHEEL_KD;
g_wheel_controller.error = 0;
g_wheel_controller.integral = 0;
g_wheel_controller.derivative = 0.0f;
g_wheel_controller.output = STEERING_WHEEL_MIDDLE;
//Handbrake PID
g_hb_controller.kp = HB_KP;
g_hb_controller.ki = HB_KI;
g_hb_controller.kd = HB_KD;
g_hb_controller.error = 0;
g_hb_controller.integral = 0;
g_hb_controller.derivative = 0.0f;
g_hb_controller.output = 0;
g_hb_controller.min_duty = HB_MIN_DUTY_COEF * __HAL_TIM_GET_AUTORELOAD(&htim5);
g_hb_controller.max_duty = HB_MAX_DUTY_COEF * __HAL_TIM_GET_AUTORELOAD(&htim5);
}
void calculateGasControllerPID(int rpm) {
g_gas_controller.error = abs(rpm) - g_car_ecu.motor_rpm; //abs is needed, because requested speed could be negative, but motor rpm is always positive
g_gas_controller.integral = g_gas_controller.integral + g_gas_controller.error*g_gas_controller.delay;
g_gas_controller.derivative = (g_gas_controller.error - g_gas_controller.previous_error)/g_gas_controller.delay;
if(abs(g_gas_controller.integral) > MAX_GAS_PEDAL_INTEGRAL){
g_gas_controller.integral = g_gas_controller.integral - g_gas_controller.error*g_gas_controller.delay;
}
g_gas_controller.output = g_gas_controller.kp*g_gas_controller.error
+ g_gas_controller.ki*g_gas_controller.integral
- g_gas_controller.kd*g_gas_controller.derivative;
}
void calculateHBControllerPID() {
g_hb_controller.error = g_hb_controller.setpoint - g_hb_controller.position;
g_hb_controller.integral = g_hb_controller.integral + g_hb_controller.error*g_hb_controller.delay;
g_hb_controller.derivative = (g_hb_controller.error - g_hb_controller.previous_error)/g_hb_controller.delay;
if(abs(g_hb_controller.integral) > MAX_HB_INTEGRAL){
g_hb_controller.integral = g_hb_controller.integral - g_hb_controller.error*g_hb_controller.delay;
}
g_hb_controller.output = g_hb_controller.kd*g_hb_controller.error
+ g_hb_controller.ki*g_hb_controller.integral
- g_hb_controller.kd*g_hb_controller.derivative;
g_hb_controller.previous_error = g_hb_controller.error;
}
void calculateWheelControllerPID(void) {
g_wheel_controller.error = g_requested_data.wheel_angle_deg - g_car_ecu.steering_wheel;
g_wheel_controller.integral = g_wheel_controller.integral + g_wheel_controller.error*g_wheel_controller.delay;
g_wheel_controller.derivative = 0.9* g_wheel_controller.derivative + 0.1*(g_wheel_controller.error - g_wheel_controller.previous_error)/g_wheel_controller.delay; //to even derivative part of PID
g_wheel_controller.diff = g_wheel_controller.error - g_wheel_controller.previous_error; //Just do debug derivative calculation problems
//if integral is bigger than allowed, we need restore the previous integral
if(abs(g_wheel_controller.integral) > STEERING_WHEEL_MAX_INTEGRAL){
g_wheel_controller.integral = g_wheel_controller.integral - g_wheel_controller.error*g_wheel_controller.delay;
}
g_wheel_controller.output = STEERING_WHEEL_MIDDLE + g_wheel_controller.kp*g_wheel_controller.error
+ g_wheel_controller.ki*g_wheel_controller.integral
- g_wheel_controller.kd*g_wheel_controller.derivative;
if (g_wheel_controller.output < MIN_STEERING_WHEEL_DAC_OUTPUT) {
g_wheel_controller.output = MIN_STEERING_WHEEL_DAC_OUTPUT;
}
else if (g_wheel_controller.output > MAX_STEERING_WHEEL_DAC_OUTPUT){
g_wheel_controller.output = MAX_STEERING_WHEEL_DAC_OUTPUT;
}
g_wheel_controller.previous_error = g_wheel_controller.error;
}
void setHandbrakePWMOutput(void) {
if (g_hb_controller.output == 0) {
HAL_GPIO_WritePin(HB_REn_GPIO_Port, HB_REn_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(HB_LEn_GPIO_Port, HB_LEn_Pin, GPIO_PIN_RESET);
TIM5->CCR3 = 0;
TIM5->CCR4 = 0;
}
//Release handbrake
if (g_hb_controller.output < 0) {
HAL_GPIO_WritePin(HB_REn_GPIO_Port, HB_REn_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(HB_LEn_GPIO_Port, HB_LEn_Pin, GPIO_PIN_SET);
if (-g_hb_controller.output < g_hb_controller.min_duty) {
g_hb_controller.output = 0;
}
if (-g_hb_controller.output > g_hb_controller.max_duty) {
g_hb_controller.output = -g_hb_controller.max_duty;
}
TIM5->CCR3 = -g_hb_controller.output;
TIM5->CCR4 = 0;
}
//Turn on handbrake
else {
HAL_GPIO_WritePin(HB_REn_GPIO_Port, HB_REn_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(HB_LEn_GPIO_Port, HB_LEn_Pin, GPIO_PIN_SET);
if (g_hb_controller.output < g_hb_controller.min_duty) {
g_hb_controller.output = 0;
}
if (g_hb_controller.output > g_hb_controller.max_duty) {
g_hb_controller.output = g_hb_controller.max_duty;
}
TIM5->CCR4 = g_hb_controller.output;
TIM5->CCR3= 0;
}
}
void startGasPedal(void) {
if (HAL_DAC_Start(&hdac, DAC1_CHANNEL_1) != HAL_OK) {
Error_Handler();
}
if (HAL_DAC_Start(&hdac, DAC1_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
}
void startHandbrake(void) {
int time;
//TIM5 is used for handbrake PWM signal
if (HAL_TIM_Base_Start(&htim5) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Start(&htim5,TIM_CHANNEL_3) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Start(&htim5,TIM_CHANNEL_4) != HAL_OK) {
Error_Handler();
}
//TIM4 is used for handbrake encoder
if (HAL_TIM_Base_Start(&htim4) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_Encoder_Start(&htim4, TIM_CHANNEL_ALL) != HAL_OK) {
Error_Handler();
}
//ADC is used for handbrake current sensor
if (HAL_ADC_Start(&hadc1) != HAL_OK) {
Error_Handler();
}
//Handbrake calibration, pulls until current limit is reached => hb fully on
time = HAL_GetTick();
while (g_hb_controller.current < HB_CURRENT_LIMIT){
if (HAL_ADC_PollForConversion(&hadc1, 1) == HAL_OK) {
g_hb_controller.current = HAL_ADC_GetValue(&hadc1) - 2048; //Because current can be negative aswell, 0A is in the middle of ADC
}
//Set to pull hanbrake on
HAL_GPIO_WritePin(HB_REn_GPIO_Port, HB_REn_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(HB_LEn_GPIO_Port, HB_LEn_Pin, GPIO_PIN_SET);
TIM5->CCR4 = g_hb_controller.max_duty;
TIM5->CCR3 = 0;
while (HAL_GetTick()-time < HB_START_DELAY); //Little delay, because pulling handbrake on takes some time
}
//if current limit has been reached, set the position as the end of the range
if (g_hb_controller.current > HB_CURRENT_LIMIT) {
HAL_GPIO_WritePin(HB_REn_GPIO_Port, HB_REn_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(HB_LEn_GPIO_Port, HB_LEn_Pin, GPIO_PIN_RESET);
TIM5->CCR4 = 0;
TIM5->CCR3 = 0;
TIM4->CNT = HB_RANGE;
g_hb_controller.position = TIM4->CNT;
}
}
void startSteeringWheel(void) {
//WHEEL
if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
}
//currently unused
void sendStatusFeedbackCAN(int funcID){
hcan1.pTxMsg->StdId = CAN_ID_DEBUG;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->DLC = 8;
hcan1.pTxMsg->Data[0] = g_requested_data.velocity_kmh;
hcan1.pTxMsg->Data[1] = g_car_ecu.odometer;
hcan1.pTxMsg->Data[2] = g_requested_data.wheel_angle/256;
hcan1.pTxMsg->Data[3] = ((int)g_requested_data.wheel_angle)%256;
hcan1.pTxMsg->Data[4] = g_car_ecu.steering_wheel/256;
hcan1.pTxMsg->Data[5] = g_car_ecu.steering_wheel%256;
hcan1.pTxMsg->Data[6] = g_requested_data.safety_brake;
hcan1.pTxMsg->Data[7] = funcID; // Corresponds to the function the message is sent out from
HAL_CAN_Transmit_IT(&hcan1);
}
/**
******************************************************************************
* File Name : freertos.c
* Description : Code for freertos applications
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "FreeRTOS.h"
#include "task.h"
#include "cmsis_os.h"
/* USER CODE BEGIN Includes */
#include "can.h"
#include "drive.h"
#include "utils.h"
#include "stdlib.h"
#include "usart.h"
#include "string.h"
/* USER CODE END Includes */
/* Variables -----------------------------------------------------------------*/
osThreadId MainTaskHandle;
osThreadId GasTaskHandle;
/* USER CODE BEGIN Variables */
extern struct car_ecu_parameters g_car_ecu;
extern struct requested_car_parameters g_requested_data;
extern struct pid_controller g_wheel_controller;
extern UART_HandleTypeDef huart1;
/* USER CODE END Variables */
/* Function prototypes -------------------------------------------------------*/
void MainThread(void const * argument);
void GasThread(void const * argument);
void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
/* USER CODE BEGIN FunctionPrototypes */
/* USER CODE END FunctionPrototypes */
/* Hook prototypes */
/* Init FreeRTOS */
void MX_FREERTOS_Init(void) {
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the thread(s) */
/* definition and creation of MainTask */
osThreadDef(MainTask, MainThread, osPriorityHigh, 0, 128);
MainTaskHandle = osThreadCreate(osThread(MainTask), NULL);
/* definition and creation of GasTask */
osThreadDef(GasTask, GasThread, osPriorityHigh, 0, 128);
GasTaskHandle = osThreadCreate(osThread(GasTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
}
/* MainThread function */
void MainThread(void const * argument)
{
/* USER CODE BEGIN MainThread */
char txData[30] = "Main thread started\r\n";
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
setStartingParameters();
HAL_GPIO_WritePin(RGB_G_3_GPIO_Port, RGB_G_3_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(RGB_R_3_GPIO_Port, RGB_R_3_Pin, GPIO_PIN_RESET);
/* Infinite loop */
for(;;)
{
strcpy(txData,"Terminating main thread\r\n");
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
osThreadTerminate(NULL);
}
/* USER CODE END MainThread */
}
/* GasThread function */
void GasThread(void const * argument)
{
/* USER CODE BEGIN GasThread */
char txData[30] = "Gas thread started\r\n";
HAL_UART_Transmit(&huart1, (uint8_t *)txData, strlen(txData),10);
int c = 0; // counter used for debbuging purpose
int p = 0;
startGasPedal();
setGasPedalDACOutput();
if (changeGear(GEAR_P) != GEAR_CHANGE_READY) {
//TODO
}
startSteeringWheel();
setSteeringWheelPWMOutput();
// startHandbrake();
HAL_GPIO_WritePin(RGB_R_3_GPIO_Port, RGB_R_3_Pin, GPIO_PIN_SET);
/* Infinite loop */
for(;;) {
c++;
if (HAL_GetTick() - p > 100) {
HAL_GPIO_TogglePin(RGB_B_2_GPIO_Port, RGB_B_2_Pin);
p = HAL_GetTick();
}
hcan1.pTxMsg->StdId = 0x321;
hcan1.pTxMsg->IDE = CAN_ID_STD;
hcan1.pTxMsg->RTR = CAN_RTR_DATA;
hcan1.pTxMsg->DLC = 4;
hcan1.pTxMsg->Data[0] = abs(convertMStoKMH(g_requested_data.velocity_ms));
hcan1.pTxMsg->Data[1] = g_car_ecu.odometer;
hcan1.pTxMsg->Data[2] = c/256;
hcan1.pTxMsg->Data[3] = c%256;
// HAL_CAN_Transmit_IT(&hcan1);
/* if(convertMStoKMH(g_requested_data.velocity) == 0){
if (changeGear(GEAR_P) != GEAR_CHANGE_READY) {
//TODO
}
}
if (g_car_ecu.odometer != abs(convertMStoKMH(g_requested_data.velocity))) {
if (g_requested_data.velocity > 0) {
if (changeGear(GEAR_D) != GEAR_CHANGE_READY) {
//TODO
}
} else if (g_requested_data.velocity < 0) {
if (changeGear(GEAR_R) != GEAR_CHANGE_READY) {
//TODO
}
} else if (g_requested_data.velocity == 0) {
//TODO
}
//changeSpeed();
}*/
changeSpeed();
changeWheelAngle();
// osDelay(1);
}
/* USER CODE END GasThread */
}
/* USER CODE BEGIN Application */
/* USER CODE END Application */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : gpio.c
* Description : This file provides code for the configuration
* of all used GPIO pins.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/*----------------------------------------------------------------------------*/
/* Configure GPIO */
/*----------------------------------------------------------------------------*/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, RGB_B_3_Pin|RGB_G_3_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, RGB_R_3_Pin|RGB_B_1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, RGB_G_1_Pin|RGB_R_1_Pin|RGB_B_2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, RGB_G_2_Pin|RGB_R_2_Pin|GEAR_P_Pin|GEAR_R_Pin
|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, HB_REn_Pin|HB_LEn_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PAPin PAPin */
GPIO_InitStruct.Pin = RGB_B_3_Pin|RGB_G_3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PCPin PCPin */
GPIO_InitStruct.Pin = RGB_R_3_Pin|RGB_B_1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PBPin PBPin PBPin */
GPIO_InitStruct.Pin = RGB_G_1_Pin|RGB_R_1_Pin|RGB_B_2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PEPin PEPin PEPin PEPin
PEPin PEPin PEPin PEPin */
GPIO_InitStruct.Pin = RGB_G_2_Pin|RGB_R_2_Pin|GEAR_P_Pin|GEAR_R_Pin
|GEAR_N_Pin|GEAR_D_Pin|GEAR_B_Pin|GEAR_C_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : PDPin PDPin */
GPIO_InitStruct.Pin = HB_REn_Pin|HB_LEn_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
}
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
#include "adc.h"
#include "can.h"
#include "dac.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* USER CODE BEGIN Includes */
#include "drive.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
struct requested_car_parameters g_requested_data;
struct car_ecu_parameters g_car_ecu;
struct pid_controller g_gas_controller;
struct pid_controller g_wheel_controller;
struct my_car_parameters g_my_car;
struct hb_controller g_hb_controller;
struct counters g_counters;
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void MX_FREERTOS_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DAC_Init();
MX_ADC1_Init();
MX_CAN1_Init();
MX_CAN2_Init();
MX_TIM5_Init();
MX_TIM4_Init();
MX_TIM2_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
//HAL_GPIO_WritePin(GPIOD, LED_RED_Pin, GPIO_PIN_SET);
//convertMStoKMH(g_requested_data.velocity);
HAL_GPIO_WritePin(RGB_G_3_GPIO_Port, RGB_G_3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_G_2_GPIO_Port, RGB_G_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_G_1_GPIO_Port, RGB_G_1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_B_3_GPIO_Port, RGB_B_3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_B_2_GPIO_Port, RGB_B_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_B_1_GPIO_Port, RGB_B_1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_R_3_GPIO_Port, RGB_R_3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_R_2_GPIO_Port, RGB_R_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(RGB_R_1_GPIO_Port, RGB_R_1_Pin, GPIO_PIN_SET);
/* USER CODE END 2 */
/* Call init function for freertos objects (in freertos.c) */
MX_FREERTOS_Init();
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 320;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void _Error_Handler(char * file, int line)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
//TODO
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : stm32f4xx_hal_msp.c
* Description : This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
extern void _Error_Handler(char *, int);
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 15, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* @file stm32f4xx_hal_timebase_TIM.c
* @brief HAL time base based on the hardware TIM.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "stm32f4xx_hal_tim.h"
/** @addtogroup STM32F7xx_HAL_Examples
* @{
*/
/** @addtogroup HAL_TimeBase
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
uint32_t uwIncrementState = 0;
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/**
* @brief This function configures the TIM1 as a time base source.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig().
* @param TickPriority: Tick interrupt priorty.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
RCC_ClkInitTypeDef clkconfig;
uint32_t uwTimclock = 0;
uint32_t uwPrescalerValue = 0;
uint32_t pFLatency;
/*Configure the TIM1 IRQ priority */
HAL_NVIC_SetPriority(TIM1_UP_TIM10_IRQn, TickPriority ,0);
/* Enable the TIM1 global Interrupt */
HAL_NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn);
/* Enable TIM1 clock */
__HAL_RCC_TIM1_CLK_ENABLE();
/* Get clock configuration */
HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
/* Compute TIM1 clock */
uwTimclock = 2*HAL_RCC_GetPCLK2Freq();
/* Compute the prescaler value to have TIM1 counter clock equal to 1MHz */
uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
/* Initialize TIM1 */
htim1.Instance = TIM1;
/* Initialize TIMx peripheral as follow:
+ Period = [(TIM1CLK/1000) - 1]. to have a (1/1000) s time base.
+ Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
+ ClockDivision = 0
+ Counter direction = Up
*/
htim1.Init.Period = (1000000 / 1000) - 1;
htim1.Init.Prescaler = uwPrescalerValue;
htim1.Init.ClockDivision = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
if(HAL_TIM_Base_Init(&htim1) == HAL_OK)
{
/* Start the TIM time Base generation in interrupt mode */
return HAL_TIM_Base_Start_IT(&htim1);
}
/* Return function status */
return HAL_ERROR;
}
/**
* @brief Suspend Tick increment.
* @note Disable the tick increment by disabling TIM1 update interrupt.
* @param None
* @retval None
*/
void HAL_SuspendTick(void)
{
/* Disable TIM1 update Interrupt */
__HAL_TIM_DISABLE_IT(&htim1, TIM_IT_UPDATE);
}
/**
* @brief Resume Tick increment.
* @note Enable the tick increment by Enabling TIM1 update interrupt.
* @param None
* @retval None
*/
void HAL_ResumeTick(void)
{
/* Enable TIM1 Update interrupt */
__HAL_TIM_ENABLE_IT(&htim1, TIM_IT_UPDATE);
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* @file stm32f4xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
*
* COPYRIGHT(c) 2018 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "stm32f4xx.h"
#include "stm32f4xx_it.h"
#include "cmsis_os.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern CAN_HandleTypeDef hcan1;
extern CAN_HandleTypeDef hcan2;
extern DAC_HandleTypeDef hdac;
extern UART_HandleTypeDef huart1;
extern TIM_HandleTypeDef htim1;
/******************************************************************************/
/* Cortex-M4 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
osSystickHandler();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32F4xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32f4xx.s). */
/******************************************************************************/
/**
* @brief This function handles EXTI line0 interrupt.
*/
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}
/**
* @brief This function handles CAN1 TX interrupts.
*/
void CAN1_TX_IRQHandler(void)
{
/* USER CODE BEGIN CAN1_TX_IRQn 0 */
/* USER CODE END CAN1_TX_IRQn 0 */
HAL_CAN_IRQHandler(&hcan1);
/* USER CODE BEGIN CAN1_TX_IRQn 1 */
/* USER CODE END CAN1_TX_IRQn 1 */
}
/**
* @brief This function handles CAN1 RX0 interrupts.
*/
void CAN1_RX0_IRQHandler(void)
{
/* USER CODE BEGIN CAN1_RX0_IRQn 0 */
/* USER CODE END CAN1_RX0_IRQn 0 */
HAL_CAN_IRQHandler(&hcan1);
/* USER CODE BEGIN CAN1_RX0_IRQn 1 */
/* USER CODE END CAN1_RX0_IRQn 1 */
}
/**
* @brief This function handles CAN1 SCE interrupt.
*/
void CAN1_SCE_IRQHandler(void)
{
/* USER CODE BEGIN CAN1_SCE_IRQn 0 */
/* USER CODE END CAN1_SCE_IRQn 0 */
HAL_CAN_IRQHandler(&hcan1);
/* USER CODE BEGIN CAN1_SCE_IRQn 1 */
/* USER CODE END CAN1_SCE_IRQn 1 */
}
/**
* @brief This function handles TIM1 update interrupt and TIM10 global interrupt.
*/
void TIM1_UP_TIM10_IRQHandler(void)
{
/* USER CODE BEGIN TIM1_UP_TIM10_IRQn 0 */
/* USER CODE END TIM1_UP_TIM10_IRQn 0 */
HAL_TIM_IRQHandler(&htim1);
/* USER CODE BEGIN TIM1_UP_TIM10_IRQn 1 */
/* USER CODE END TIM1_UP_TIM10_IRQn 1 */
}
/**
* @brief This function handles USART1 global interrupt.
*/
void USART1_IRQHandler(void)
{
/* USER CODE BEGIN USART1_IRQn 0 */
/* USER CODE END USART1_IRQn 0 */
HAL_UART_IRQHandler(&huart1);
/* USER CODE BEGIN USART1_IRQn 1 */
/* USER CODE END USART1_IRQn 1 */
}
/**
* @brief This function handles TIM6 global interrupt, DAC1 and DAC2 underrun error interrupts.
*/
void TIM6_DAC_IRQHandler(void)
{
/* USER CODE BEGIN TIM6_DAC_IRQn 0 */
/* USER CODE END TIM6_DAC_IRQn 0 */
HAL_DAC_IRQHandler(&hdac);
/* USER CODE BEGIN TIM6_DAC_IRQn 1 */
/* USER CODE END TIM6_DAC_IRQn 1 */
}
/**
* @brief This function handles CAN2 TX interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
/* USER CODE BEGIN CAN2_TX_IRQn 0 */
/* USER CODE END CAN2_TX_IRQn 0 */
HAL_CAN_IRQHandler(&hcan2);
/* USER CODE BEGIN CAN2_TX_IRQn 1 */
/* USER CODE END CAN2_TX_IRQn 1 */
}
/**
* @brief This function handles CAN2 RX0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
/* USER CODE BEGIN CAN2_RX0_IRQn 0 */
/* USER CODE END CAN2_RX0_IRQn 0 */
HAL_CAN_IRQHandler(&hcan2);
/* USER CODE BEGIN CAN2_RX0_IRQn 1 */
/* USER CODE END CAN2_RX0_IRQn 1 */
}
/**
* @brief This function handles CAN2 SCE interrupt.
*/
void CAN2_SCE_IRQHandler(void)
{
/* USER CODE BEGIN CAN2_SCE_IRQn 0 */
/* USER CODE END CAN2_SCE_IRQn 0 */
HAL_CAN_IRQHandler(&hcan2);
/* USER CODE BEGIN CAN2_SCE_IRQn 1 */
/* USER CODE END CAN2_SCE_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* @file system_stm32f4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32f4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32f4xx_system
* @{
*/
/** @addtogroup STM32F4xx_System_Private_Includes
* @{
*/
#include "stm32f4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Default value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to use external SRAM or SDRAM as data memory */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)\
|| defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx)
/* #define DATA_IN_ExtSRAM */
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F469xx || STM32F479xx ||\
STM32F412Zx || STM32F412Vx */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
/* #define DATA_IN_ExtSDRAM */
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx ||\
STM32F479xx */
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 16000000;
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_FunctionPrototypes
* @{
*/
#if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
static void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting, vector table location and External memory
* configuration.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
/* Reset the RCC clock configuration to the default reset state ------------*/
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset CFGR register */
RCC->CFGR = 0x00000000;
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset PLLCFGR register */
RCC->PLLCFGR = 0x24003010;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
#if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (its value
* depends on the application requirements), user has to ensure that HSE_VALUE
* is same as the real frequency of the crystal used. Otherwise, this function
* may have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N
SYSCLK = PLL_VCO / PLL_P
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
if (pllsource != 0)
{
/* HSE used as PLL clock source */
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
else
{
/* HSI used as PLL clock source */
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
SystemCoreClock = pllvco/pllp;
break;
default:
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK frequency --------------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK frequency */
SystemCoreClock >>= tmp;
}
#if defined (DATA_IN_ExtSRAM) && defined (DATA_IN_ExtSDRAM)
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx)
/**
* @brief Setup the external memory controller.
* Called in startup_stm32f4xx.s before jump to main.
* This function configures the external memories (SRAM/SDRAM)
* This SRAM/SDRAM will be used as program data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
__IO uint32_t tmp = 0x00;
register uint32_t tmpreg = 0, timeout = 0xFFFF;
register __IO uint32_t index;
/* Enable GPIOC, GPIOD, GPIOE, GPIOF, GPIOG, GPIOH and GPIOI interface clock */
RCC->AHB1ENR |= 0x000001F8;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x00CCC0CC;
GPIOD->AFR[1] = 0xCCCCCCCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xAAAA0A8A;
/* Configure PDx pins speed to 100 MHz */
GPIOD->OSPEEDR = 0xFFFF0FCF;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00CC0CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA828A;
/* Configure PEx pins speed to 100 MHz */
GPIOE->OSPEEDR = 0xFFFFC3CF;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0xCCCCCCCC;
GPIOF->AFR[1] = 0xCCCCCCCC;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA800AAA;
/* Configure PFx pins speed to 50 MHz */
GPIOF->OSPEEDR = 0xAA800AAA;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0xCCCCCCCC;
GPIOG->AFR[1] = 0xCCCCCCCC;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0xAAAAAAAA;
/* Configure PGx pins speed to 50 MHz */
GPIOG->OSPEEDR = 0xAAAAAAAA;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
/* Connect PHx pins to FMC Alternate function */
GPIOH->AFR[0] = 0x00C0CC00;
GPIOH->AFR[1] = 0xCCCCCCCC;
/* Configure PHx pins in Alternate function mode */
GPIOH->MODER = 0xAAAA08A0;
/* Configure PHx pins speed to 50 MHz */
GPIOH->OSPEEDR = 0xAAAA08A0;
/* Configure PHx pins Output type to push-pull */
GPIOH->OTYPER = 0x00000000;
/* No pull-up, pull-down for PHx pins */
GPIOH->PUPDR = 0x00000000;
/* Connect PIx pins to FMC Alternate function */
GPIOI->AFR[0] = 0xCCCCCCCC;
GPIOI->AFR[1] = 0x00000CC0;
/* Configure PIx pins in Alternate function mode */
GPIOI->MODER = 0x0028AAAA;
/* Configure PIx pins speed to 50 MHz */
GPIOI->OSPEEDR = 0x0028AAAA;
/* Configure PIx pins Output type to push-pull */
GPIOI->OTYPER = 0x00000000;
/* No pull-up, pull-down for PIx pins */
GPIOI->PUPDR = 0x00000000;
/*-- FMC Configuration -------------------------------------------------------*/
/* Enable the FMC interface clock */
RCC->AHB3ENR |= 0x00000001;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
FMC_Bank5_6->SDCR[0] = 0x000019E4;
FMC_Bank5_6->SDTR[0] = 0x01115351;
/* SDRAM initialization sequence */
/* Clock enable command */
FMC_Bank5_6->SDCMR = 0x00000011;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Delay */
for (index = 0; index<1000; index++);
/* PALL command */
FMC_Bank5_6->SDCMR = 0x00000012;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Auto refresh command */
FMC_Bank5_6->SDCMR = 0x00000073;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* MRD register program */
FMC_Bank5_6->SDCMR = 0x00046014;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Set refresh count */
tmpreg = FMC_Bank5_6->SDRTR;
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000027C<<1));
/* Disable write protection */
tmpreg = FMC_Bank5_6->SDCR[0];
FMC_Bank5_6->SDCR[0] = (tmpreg & 0xFFFFFDFF);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001011;
FMC_Bank1->BTCR[3] = 0x00000201;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#if defined(STM32F469xx) || defined(STM32F479xx)
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001091;
FMC_Bank1->BTCR[3] = 0x00110212;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F469xx || STM32F479xx */
(void)(tmp);
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx */
#elif defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
/**
* @brief Setup the external memory controller.
* Called in startup_stm32f4xx.s before jump to main.
* This function configures the external memories (SRAM/SDRAM)
* This SRAM/SDRAM will be used as program data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
__IO uint32_t tmp = 0x00;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
#if defined (DATA_IN_ExtSDRAM)
register uint32_t tmpreg = 0, timeout = 0xFFFF;
register __IO uint32_t index;
#if defined(STM32F446xx)
/* Enable GPIOA, GPIOC, GPIOD, GPIOE, GPIOF, GPIOG interface
clock */
RCC->AHB1ENR |= 0x0000007D;
#else
/* Enable GPIOC, GPIOD, GPIOE, GPIOF, GPIOG, GPIOH and GPIOI interface
clock */
RCC->AHB1ENR |= 0x000001F8;
#endif /* STM32F446xx */
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);
#if defined(STM32F446xx)
/* Connect PAx pins to FMC Alternate function */
GPIOA->AFR[0] |= 0xC0000000;
GPIOA->AFR[1] |= 0x00000000;
/* Configure PDx pins in Alternate function mode */
GPIOA->MODER |= 0x00008000;
/* Configure PDx pins speed to 50 MHz */
GPIOA->OSPEEDR |= 0x00008000;
/* Configure PDx pins Output type to push-pull */
GPIOA->OTYPER |= 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOA->PUPDR |= 0x00000000;
/* Connect PCx pins to FMC Alternate function */
GPIOC->AFR[0] |= 0x00CC0000;
GPIOC->AFR[1] |= 0x00000000;
/* Configure PDx pins in Alternate function mode */
GPIOC->MODER |= 0x00000A00;
/* Configure PDx pins speed to 50 MHz */
GPIOC->OSPEEDR |= 0x00000A00;
/* Configure PDx pins Output type to push-pull */
GPIOC->OTYPER |= 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOC->PUPDR |= 0x00000000;
#endif /* STM32F446xx */
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x000000CC;
GPIOD->AFR[1] = 0xCC000CCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xA02A000A;
/* Configure PDx pins speed to 50 MHz */
GPIOD->OSPEEDR = 0xA02A000A;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00000CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA800A;
/* Configure PEx pins speed to 50 MHz */
GPIOE->OSPEEDR = 0xAAAA800A;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0xCCCCCCCC;
GPIOF->AFR[1] = 0xCCCCCCCC;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA800AAA;
/* Configure PFx pins speed to 50 MHz */
GPIOF->OSPEEDR = 0xAA800AAA;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0xCCCCCCCC;
GPIOG->AFR[1] = 0xCCCCCCCC;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0xAAAAAAAA;
/* Configure PGx pins speed to 50 MHz */
GPIOG->OSPEEDR = 0xAAAAAAAA;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx)
/* Connect PHx pins to FMC Alternate function */
GPIOH->AFR[0] = 0x00C0CC00;
GPIOH->AFR[1] = 0xCCCCCCCC;
/* Configure PHx pins in Alternate function mode */
GPIOH->MODER = 0xAAAA08A0;
/* Configure PHx pins speed to 50 MHz */
GPIOH->OSPEEDR = 0xAAAA08A0;
/* Configure PHx pins Output type to push-pull */
GPIOH->OTYPER = 0x00000000;
/* No pull-up, pull-down for PHx pins */
GPIOH->PUPDR = 0x00000000;
/* Connect PIx pins to FMC Alternate function */
GPIOI->AFR[0] = 0xCCCCCCCC;
GPIOI->AFR[1] = 0x00000CC0;
/* Configure PIx pins in Alternate function mode */
GPIOI->MODER = 0x0028AAAA;
/* Configure PIx pins speed to 50 MHz */
GPIOI->OSPEEDR = 0x0028AAAA;
/* Configure PIx pins Output type to push-pull */
GPIOI->OTYPER = 0x00000000;
/* No pull-up, pull-down for PIx pins */
GPIOI->PUPDR = 0x00000000;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx */
/*-- FMC Configuration -------------------------------------------------------*/
/* Enable the FMC interface clock */
RCC->AHB3ENR |= 0x00000001;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable SDRAM bank1 */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCR[0] = 0x00001954;
#else
FMC_Bank5_6->SDCR[0] = 0x000019E4;
#endif /* STM32F446xx */
FMC_Bank5_6->SDTR[0] = 0x01115351;
/* SDRAM initialization sequence */
/* Clock enable command */
FMC_Bank5_6->SDCMR = 0x00000011;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Delay */
for (index = 0; index<1000; index++);
/* PALL command */
FMC_Bank5_6->SDCMR = 0x00000012;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Auto refresh command */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCMR = 0x000000F3;
#else
FMC_Bank5_6->SDCMR = 0x00000073;
#endif /* STM32F446xx */
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* MRD register program */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCMR = 0x00044014;
#else
FMC_Bank5_6->SDCMR = 0x00046014;
#endif /* STM32F446xx */
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Set refresh count */
tmpreg = FMC_Bank5_6->SDRTR;
#if defined(STM32F446xx)
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000050C<<1));
#else
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000027C<<1));
#endif /* STM32F446xx */
/* Disable write protection */
tmpreg = FMC_Bank5_6->SDCR[0];
FMC_Bank5_6->SDCR[0] = (tmpreg & 0xFFFFFDFF);
#endif /* DATA_IN_ExtSDRAM */
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx || STM32F479xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)\
|| defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx)
#if defined(DATA_IN_ExtSRAM)
/*-- GPIOs Configuration -----------------------------------------------------*/
/* Enable GPIOD, GPIOE, GPIOF and GPIOG interface clock */
RCC->AHB1ENR |= 0x00000078;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIODEN);
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x00CCC0CC;
GPIOD->AFR[1] = 0xCCCCCCCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xAAAA0A8A;
/* Configure PDx pins speed to 100 MHz */
GPIOD->OSPEEDR = 0xFFFF0FCF;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00CC0CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA828A;
/* Configure PEx pins speed to 100 MHz */
GPIOE->OSPEEDR = 0xFFFFC3CF;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0x00CCCCCC;
GPIOF->AFR[1] = 0xCCCC0000;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA000AAA;
/* Configure PFx pins speed to 100 MHz */
GPIOF->OSPEEDR = 0xFF000FFF;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0x00CCCCCC;
GPIOG->AFR[1] = 0x000000C0;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0x00085AAA;
/* Configure PGx pins speed to 100 MHz */
GPIOG->OSPEEDR = 0x000CAFFF;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
/*-- FMC/FSMC Configuration --------------------------------------------------*/
/* Enable the FMC/FSMC interface clock */
RCC->AHB3ENR |= 0x00000001;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001011;
FMC_Bank1->BTCR[3] = 0x00000201;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#if defined(STM32F469xx) || defined(STM32F479xx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001091;
FMC_Bank1->BTCR[3] = 0x00110212;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F469xx || STM32F479xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx)\
|| defined(STM32F412Zx) || defined(STM32F412Vx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FSMCEN);
/* Configure and enable Bank1_SRAM2 */
FSMC_Bank1->BTCR[2] = 0x00001011;
FSMC_Bank1->BTCR[3] = 0x00000201;
FSMC_Bank1E->BWTR[2] = 0x0FFFFFFF;
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F412Zx || STM32F412Vx */
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx ||\
STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx || STM32F412Zx || STM32F412Vx */
(void)(tmp);
}
#endif /* DATA_IN_ExtSRAM && DATA_IN_ExtSDRAM */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : TIM.c
* Description : This file provides code for the configuration
* of the TIM instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "tim.h"
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim5;
/* TIM2 init function */
void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 1600000;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_TIM_MspPostInit(&htim2);
}
/* TIM4 init function */
void MX_TIM4_Init(void)
{
TIM_Encoder_InitTypeDef sConfig;
TIM_MasterConfigTypeDef sMasterConfig;
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_FALLING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_FALLING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* TIM5 init function */
void MX_TIM5_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim5.Instance = TIM5;
htim5.Init.Prescaler = 0;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 16000;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim5) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
if (HAL_TIM_PWM_ConfigChannel(&htim5, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_TIM_MspPostInit(&htim5);
}
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* tim_pwmHandle)
{
if(tim_pwmHandle->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* TIM2 clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
else if(tim_pwmHandle->Instance==TIM5)
{
/* USER CODE BEGIN TIM5_MspInit 0 */
/* USER CODE END TIM5_MspInit 0 */
/* TIM5 clock enable */
__HAL_RCC_TIM5_CLK_ENABLE();
/* USER CODE BEGIN TIM5_MspInit 1 */
/* USER CODE END TIM5_MspInit 1 */
}
}
void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef* tim_encoderHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(tim_encoderHandle->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspInit 0 */
/* USER CODE END TIM4_MspInit 0 */
/* TIM4 clock enable */
__HAL_RCC_TIM4_CLK_ENABLE();
/**TIM4 GPIO Configuration
PD12 ------> TIM4_CH1
PD13 ------> TIM4_CH2
*/
GPIO_InitStruct.Pin = HB_EncA_Pin|HB_EncB_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM4;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USER CODE BEGIN TIM4_MspInit 1 */
/* USER CODE END TIM4_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(timHandle->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspPostInit 0 */
/* USER CODE END TIM2_MspPostInit 0 */
/**TIM2 GPIO Configuration
PB3 ------> TIM2_CH2
*/
GPIO_InitStruct.Pin = ST_PWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(ST_PWM_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN TIM2_MspPostInit 1 */
/* USER CODE END TIM2_MspPostInit 1 */
}
else if(timHandle->Instance==TIM5)
{
/* USER CODE BEGIN TIM5_MspPostInit 0 */
/* USER CODE END TIM5_MspPostInit 0 */
/**TIM5 GPIO Configuration
PA2 ------> TIM5_CH3
PA3 ------> TIM5_CH4
*/
GPIO_InitStruct.Pin = HB_LPWM_Pin|HB_RPWM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM5;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN TIM5_MspPostInit 1 */
/* USER CODE END TIM5_MspPostInit 1 */
}
}
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* tim_pwmHandle)
{
if(tim_pwmHandle->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
else if(tim_pwmHandle->Instance==TIM5)
{
/* USER CODE BEGIN TIM5_MspDeInit 0 */
/* USER CODE END TIM5_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM5_CLK_DISABLE();
/* USER CODE BEGIN TIM5_MspDeInit 1 */
/* USER CODE END TIM5_MspDeInit 1 */
}
}
void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef* tim_encoderHandle)
{
if(tim_encoderHandle->Instance==TIM4)
{
/* USER CODE BEGIN TIM4_MspDeInit 0 */
/* USER CODE END TIM4_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM4_CLK_DISABLE();
/**TIM4 GPIO Configuration
PD12 ------> TIM4_CH1
PD13 ------> TIM4_CH2
*/
HAL_GPIO_DeInit(GPIOD, HB_EncA_Pin|HB_EncB_Pin);
/* USER CODE BEGIN TIM4_MspDeInit 1 */
/* USER CODE END TIM4_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/**
******************************************************************************
* File Name : USART.c
* Description : This file provides code for the configuration
* of the USART instances.
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "usart.h"
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
UART_HandleTypeDef huart1;
/* USART1 init function */
void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(uartHandle->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspInit 0 */
/* USER CODE END USART1_MspInit 0 */
/* USART1 clock enable */
__HAL_RCC_USART1_CLK_ENABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
GPIO_InitStruct.Pin = DEBUG_TX_Pin|DEBUG_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART1 interrupt Init */
HAL_NVIC_SetPriority(USART1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
}
void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle)
{
if(uartHandle->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspDeInit 0 */
/* USER CODE END USART1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART1_CLK_DISABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
HAL_GPIO_DeInit(GPIOA, DEBUG_TX_Pin|DEBUG_RX_Pin);
/* USART1 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#include "utils.h"
#include "math.h"
#include "drive.h"
/*
* @brief Converts char array to float
* @param char value[] - char array to be converted (4 bytes)
* @param float *p_result - pointer to result float value
* @retval none
*/
void char2float(char value[], float *p_result) {
*((unsigned char *)(p_result) +3) = value[0];
*((unsigned char *)(p_result) +2) = value[1];
*((unsigned char *)(p_result) +1) = value[2];
*((unsigned char *)(p_result) +0) = value[3];
/*
*((unsigned char *)(p_result) +0) = value[0];
*((unsigned char *)(p_result) +1) = value[1];
*((unsigned char *)(p_result) +2) = value[2];
*((unsigned char *)(p_result) +3) = value[3];*/
}
/*
* @brief Converts m/s to km/h
* @param float speed_ms - speed to be converted in m/s
* @retval float - converted speed in km/h
*/
float convertMStoKMH(float speed_ms) {
float speed;
speed = 3.6f*speed_ms;
return speed;
}
/*
* @brief Converts radians to float value with 0.5 precision
* @param float rad - wheel angle in radians
* @retval float angle - angle value in float
*/
float convertRADtoFLOAT(float rad) {
float angle = 12.5f * rad * 180.0f / 3.14f;
angle = round(2 * angle) / 2.0f;
return angle;
}
/**
******************************************************************************
* @file startup_stm32f407xx.s
* @author MCD Application Team
* @brief STM32F407xx Devices vector table for GCC based toolchains.
* This module performs:
* - Set the initial SP
* - Set the initial PC == Reset_Handler,
* - Set the vector table entries with the exceptions ISR address
* - Branches to main in the C library (which eventually
* calls main()).
* After Reset the Cortex-M4 processor is in Thread mode,
* priority is Privileged, and the Stack is set to Main.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb
.global g_pfnVectors
.global Default_Handler
/* start address for the initialization values of the .data section.
defined in linker script */
.word _sidata
/* start address for the .data section. defined in linker script */
.word _sdata
/* end address for the .data section. defined in linker script */
.word _edata
/* start address for the .bss section. defined in linker script */
.word _sbss
/* end address for the .bss section. defined in linker script */
.word _ebss
/* stack used for SystemInit_ExtMemCtl; always internal RAM used */
/**
* @brief This is the code that gets called when the processor first
* starts execution following a reset event. Only the absolutely
* necessary set is performed, after which the application
* supplied main() routine is called.
* @param None
* @retval : None
*/
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
Reset_Handler:
ldr sp, =_estack /* set stack pointer */
/* Copy the data segment initializers from flash to SRAM */
movs r1, #0
b LoopCopyDataInit
CopyDataInit:
ldr r3, =_sidata
ldr r3, [r3, r1]
str r3, [r0, r1]
adds r1, r1, #4
LoopCopyDataInit:
ldr r0, =_sdata
ldr r3, =_edata
adds r2, r0, r1
cmp r2, r3
bcc CopyDataInit
ldr r2, =_sbss
b LoopFillZerobss
/* Zero fill the bss segment. */
FillZerobss:
movs r3, #0
str r3, [r2], #4
LoopFillZerobss:
ldr r3, = _ebss
cmp r2, r3
bcc FillZerobss
/* Call the clock system intitialization function.*/
bl SystemInit
/* Call static constructors */
bl __libc_init_array
/* Call the application's entry point.*/
bl main
bx lr
.size Reset_Handler, .-Reset_Handler
/**
* @brief This is the code that gets called when the processor receives an
* unexpected interrupt. This simply enters an infinite loop, preserving
* the system state for examination by a debugger.
* @param None
* @retval None
*/
.section .text.Default_Handler,"ax",%progbits
Default_Handler:
Infinite_Loop:
b Infinite_Loop
.size Default_Handler, .-Default_Handler
/******************************************************************************
*
* The minimal vector table for a Cortex M3. Note that the proper constructs
* must be placed on this to ensure that it ends up at physical address
* 0x0000.0000.
*
*******************************************************************************/
.section .isr_vector,"a",%progbits
.type g_pfnVectors, %object
.size g_pfnVectors, .-g_pfnVectors
g_pfnVectors:
.word _estack
.word Reset_Handler
.word NMI_Handler
.word HardFault_Handler
.word MemManage_Handler
.word BusFault_Handler
.word UsageFault_Handler
.word 0
.word 0
.word 0
.word 0
.word SVC_Handler
.word DebugMon_Handler
.word 0
.word PendSV_Handler
.word SysTick_Handler
/* External Interrupts */
.word WWDG_IRQHandler /* Window WatchDog */
.word PVD_IRQHandler /* PVD through EXTI Line detection */
.word TAMP_STAMP_IRQHandler /* Tamper and TimeStamps through the EXTI line */
.word RTC_WKUP_IRQHandler /* RTC Wakeup through the EXTI line */
.word FLASH_IRQHandler /* FLASH */
.word RCC_IRQHandler /* RCC */
.word EXTI0_IRQHandler /* EXTI Line0 */
.word EXTI1_IRQHandler /* EXTI Line1 */
.word EXTI2_IRQHandler /* EXTI Line2 */
.word EXTI3_IRQHandler /* EXTI Line3 */
.word EXTI4_IRQHandler /* EXTI Line4 */
.word DMA1_Stream0_IRQHandler /* DMA1 Stream 0 */
.word DMA1_Stream1_IRQHandler /* DMA1 Stream 1 */
.word DMA1_Stream2_IRQHandler /* DMA1 Stream 2 */
.word DMA1_Stream3_IRQHandler /* DMA1 Stream 3 */
.word DMA1_Stream4_IRQHandler /* DMA1 Stream 4 */
.word DMA1_Stream5_IRQHandler /* DMA1 Stream 5 */
.word DMA1_Stream6_IRQHandler /* DMA1 Stream 6 */
.word ADC_IRQHandler /* ADC1, ADC2 and ADC3s */
.word CAN1_TX_IRQHandler /* CAN1 TX */
.word CAN1_RX0_IRQHandler /* CAN1 RX0 */
.word CAN1_RX1_IRQHandler /* CAN1 RX1 */
.word CAN1_SCE_IRQHandler /* CAN1 SCE */
.word EXTI9_5_IRQHandler /* External Line[9:5]s */
.word TIM1_BRK_TIM9_IRQHandler /* TIM1 Break and TIM9 */
.word TIM1_UP_TIM10_IRQHandler /* TIM1 Update and TIM10 */
.word TIM1_TRG_COM_TIM11_IRQHandler /* TIM1 Trigger and Commutation and TIM11 */
.word TIM1_CC_IRQHandler /* TIM1 Capture Compare */
.word TIM2_IRQHandler /* TIM2 */
.word TIM3_IRQHandler /* TIM3 */
.word TIM4_IRQHandler /* TIM4 */
.word I2C1_EV_IRQHandler /* I2C1 Event */
.word I2C1_ER_IRQHandler /* I2C1 Error */
.word I2C2_EV_IRQHandler /* I2C2 Event */
.word I2C2_ER_IRQHandler /* I2C2 Error */
.word SPI1_IRQHandler /* SPI1 */
.word SPI2_IRQHandler /* SPI2 */
.word USART1_IRQHandler /* USART1 */
.word USART2_IRQHandler /* USART2 */
.word USART3_IRQHandler /* USART3 */
.word EXTI15_10_IRQHandler /* External Line[15:10]s */
.word RTC_Alarm_IRQHandler /* RTC Alarm (A and B) through EXTI Line */
.word OTG_FS_WKUP_IRQHandler /* USB OTG FS Wakeup through EXTI line */
.word TIM8_BRK_TIM12_IRQHandler /* TIM8 Break and TIM12 */
.word TIM8_UP_TIM13_IRQHandler /* TIM8 Update and TIM13 */
.word TIM8_TRG_COM_TIM14_IRQHandler /* TIM8 Trigger and Commutation and TIM14 */
.word TIM8_CC_IRQHandler /* TIM8 Capture Compare */
.word DMA1_Stream7_IRQHandler /* DMA1 Stream7 */
.word FSMC_IRQHandler /* FSMC */
.word SDIO_IRQHandler /* SDIO */
.word TIM5_IRQHandler /* TIM5 */
.word SPI3_IRQHandler /* SPI3 */
.word UART4_IRQHandler /* UART4 */
.word UART5_IRQHandler /* UART5 */
.word TIM6_DAC_IRQHandler /* TIM6 and DAC1&2 underrun errors */
.word TIM7_IRQHandler /* TIM7 */
.word DMA2_Stream0_IRQHandler /* DMA2 Stream 0 */
.word DMA2_Stream1_IRQHandler /* DMA2 Stream 1 */
.word DMA2_Stream2_IRQHandler /* DMA2 Stream 2 */
.word DMA2_Stream3_IRQHandler /* DMA2 Stream 3 */
.word DMA2_Stream4_IRQHandler /* DMA2 Stream 4 */
.word ETH_IRQHandler /* Ethernet */
.word ETH_WKUP_IRQHandler /* Ethernet Wakeup through EXTI line */
.word CAN2_TX_IRQHandler /* CAN2 TX */
.word CAN2_RX0_IRQHandler /* CAN2 RX0 */
.word CAN2_RX1_IRQHandler /* CAN2 RX1 */
.word CAN2_SCE_IRQHandler /* CAN2 SCE */
.word OTG_FS_IRQHandler /* USB OTG FS */
.word DMA2_Stream5_IRQHandler /* DMA2 Stream 5 */
.word DMA2_Stream6_IRQHandler /* DMA2 Stream 6 */
.word DMA2_Stream7_IRQHandler /* DMA2 Stream 7 */
.word USART6_IRQHandler /* USART6 */
.word I2C3_EV_IRQHandler /* I2C3 event */
.word I2C3_ER_IRQHandler /* I2C3 error */
.word OTG_HS_EP1_OUT_IRQHandler /* USB OTG HS End Point 1 Out */
.word OTG_HS_EP1_IN_IRQHandler /* USB OTG HS End Point 1 In */
.word OTG_HS_WKUP_IRQHandler /* USB OTG HS Wakeup through EXTI */
.word OTG_HS_IRQHandler /* USB OTG HS */
.word DCMI_IRQHandler /* DCMI */
.word 0 /* CRYP crypto */
.word HASH_RNG_IRQHandler /* Hash and Rng */
.word FPU_IRQHandler /* FPU */
/*******************************************************************************
*
* Provide weak aliases for each Exception handler to the Default_Handler.
* As they are weak aliases, any function with the same name will override
* this definition.
*
*******************************************************************************/
.weak NMI_Handler
.thumb_set NMI_Handler,Default_Handler
.weak HardFault_Handler
.thumb_set HardFault_Handler,Default_Handler
.weak MemManage_Handler
.thumb_set MemManage_Handler,Default_Handler
.weak BusFault_Handler
.thumb_set BusFault_Handler,Default_Handler
.weak UsageFault_Handler
.thumb_set UsageFault_Handler,Default_Handler
.weak SVC_Handler
.thumb_set SVC_Handler,Default_Handler
.weak DebugMon_Handler
.thumb_set DebugMon_Handler,Default_Handler
.weak PendSV_Handler
.thumb_set PendSV_Handler,Default_Handler
.weak SysTick_Handler
.thumb_set SysTick_Handler,Default_Handler
.weak WWDG_IRQHandler
.thumb_set WWDG_IRQHandler,Default_Handler
.weak PVD_IRQHandler
.thumb_set PVD_IRQHandler,Default_Handler
.weak TAMP_STAMP_IRQHandler
.thumb_set TAMP_STAMP_IRQHandler,Default_Handler
.weak RTC_WKUP_IRQHandler
.thumb_set RTC_WKUP_IRQHandler,Default_Handler
.weak FLASH_IRQHandler
.thumb_set FLASH_IRQHandler,Default_Handler
.weak RCC_IRQHandler
.thumb_set RCC_IRQHandler,Default_Handler
.weak EXTI0_IRQHandler
.thumb_set EXTI0_IRQHandler,Default_Handler
.weak EXTI1_IRQHandler
.thumb_set EXTI1_IRQHandler,Default_Handler
.weak EXTI2_IRQHandler
.thumb_set EXTI2_IRQHandler,Default_Handler
.weak EXTI3_IRQHandler
.thumb_set EXTI3_IRQHandler,Default_Handler
.weak EXTI4_IRQHandler
.thumb_set EXTI4_IRQHandler,Default_Handler
.weak DMA1_Stream0_IRQHandler
.thumb_set DMA1_Stream0_IRQHandler,Default_Handler
.weak DMA1_Stream1_IRQHandler
.thumb_set DMA1_Stream1_IRQHandler,Default_Handler
.weak DMA1_Stream2_IRQHandler
.thumb_set DMA1_Stream2_IRQHandler,Default_Handler
.weak DMA1_Stream3_IRQHandler
.thumb_set DMA1_Stream3_IRQHandler,Default_Handler
.weak DMA1_Stream4_IRQHandler
.thumb_set DMA1_Stream4_IRQHandler,Default_Handler
.weak DMA1_Stream5_IRQHandler
.thumb_set DMA1_Stream5_IRQHandler,Default_Handler
.weak DMA1_Stream6_IRQHandler
.thumb_set DMA1_Stream6_IRQHandler,Default_Handler
.weak ADC_IRQHandler
.thumb_set ADC_IRQHandler,Default_Handler
.weak CAN1_TX_IRQHandler
.thumb_set CAN1_TX_IRQHandler,Default_Handler
.weak CAN1_RX0_IRQHandler
.thumb_set CAN1_RX0_IRQHandler,Default_Handler
.weak CAN1_RX1_IRQHandler
.thumb_set CAN1_RX1_IRQHandler,Default_Handler
.weak CAN1_SCE_IRQHandler
.thumb_set CAN1_SCE_IRQHandler,Default_Handler
.weak EXTI9_5_IRQHandler
.thumb_set EXTI9_5_IRQHandler,Default_Handler
.weak TIM1_BRK_TIM9_IRQHandler
.thumb_set TIM1_BRK_TIM9_IRQHandler,Default_Handler
.weak TIM1_UP_TIM10_IRQHandler
.thumb_set TIM1_UP_TIM10_IRQHandler,Default_Handler
.weak TIM1_TRG_COM_TIM11_IRQHandler
.thumb_set TIM1_TRG_COM_TIM11_IRQHandler,Default_Handler
.weak TIM1_CC_IRQHandler
.thumb_set TIM1_CC_IRQHandler,Default_Handler
.weak TIM2_IRQHandler
.thumb_set TIM2_IRQHandler,Default_Handler
.weak TIM3_IRQHandler
.thumb_set TIM3_IRQHandler,Default_Handler
.weak TIM4_IRQHandler
.thumb_set TIM4_IRQHandler,Default_Handler
.weak I2C1_EV_IRQHandler
.thumb_set I2C1_EV_IRQHandler,Default_Handler
.weak I2C1_ER_IRQHandler
.thumb_set I2C1_ER_IRQHandler,Default_Handler
.weak I2C2_EV_IRQHandler
.thumb_set I2C2_EV_IRQHandler,Default_Handler
.weak I2C2_ER_IRQHandler
.thumb_set I2C2_ER_IRQHandler,Default_Handler
.weak SPI1_IRQHandler
.thumb_set SPI1_IRQHandler,Default_Handler
.weak SPI2_IRQHandler
.thumb_set SPI2_IRQHandler,Default_Handler
.weak USART1_IRQHandler
.thumb_set USART1_IRQHandler,Default_Handler
.weak USART2_IRQHandler
.thumb_set USART2_IRQHandler,Default_Handler
.weak USART3_IRQHandler
.thumb_set USART3_IRQHandler,Default_Handler
.weak EXTI15_10_IRQHandler
.thumb_set EXTI15_10_IRQHandler,Default_Handler
.weak RTC_Alarm_IRQHandler
.thumb_set RTC_Alarm_IRQHandler,Default_Handler
.weak OTG_FS_WKUP_IRQHandler
.thumb_set OTG_FS_WKUP_IRQHandler,Default_Handler
.weak TIM8_BRK_TIM12_IRQHandler
.thumb_set TIM8_BRK_TIM12_IRQHandler,Default_Handler
.weak TIM8_UP_TIM13_IRQHandler
.thumb_set TIM8_UP_TIM13_IRQHandler,Default_Handler
.weak TIM8_TRG_COM_TIM14_IRQHandler
.thumb_set TIM8_TRG_COM_TIM14_IRQHandler,Default_Handler
.weak TIM8_CC_IRQHandler
.thumb_set TIM8_CC_IRQHandler,Default_Handler
.weak DMA1_Stream7_IRQHandler
.thumb_set DMA1_Stream7_IRQHandler,Default_Handler
.weak FSMC_IRQHandler
.thumb_set FSMC_IRQHandler,Default_Handler
.weak SDIO_IRQHandler
.thumb_set SDIO_IRQHandler,Default_Handler
.weak TIM5_IRQHandler
.thumb_set TIM5_IRQHandler,Default_Handler
.weak SPI3_IRQHandler
.thumb_set SPI3_IRQHandler,Default_Handler
.weak UART4_IRQHandler
.thumb_set UART4_IRQHandler,Default_Handler
.weak UART5_IRQHandler
.thumb_set UART5_IRQHandler,Default_Handler
.weak TIM6_DAC_IRQHandler
.thumb_set TIM6_DAC_IRQHandler,Default_Handler
.weak TIM7_IRQHandler
.thumb_set TIM7_IRQHandler,Default_Handler
.weak DMA2_Stream0_IRQHandler
.thumb_set DMA2_Stream0_IRQHandler,Default_Handler
.weak DMA2_Stream1_IRQHandler
.thumb_set DMA2_Stream1_IRQHandler,Default_Handler
.weak DMA2_Stream2_IRQHandler
.thumb_set DMA2_Stream2_IRQHandler,Default_Handler
.weak DMA2_Stream3_IRQHandler
.thumb_set DMA2_Stream3_IRQHandler,Default_Handler
.weak DMA2_Stream4_IRQHandler
.thumb_set DMA2_Stream4_IRQHandler,Default_Handler
.weak ETH_IRQHandler
.thumb_set ETH_IRQHandler,Default_Handler
.weak ETH_WKUP_IRQHandler
.thumb_set ETH_WKUP_IRQHandler,Default_Handler
.weak CAN2_TX_IRQHandler
.thumb_set CAN2_TX_IRQHandler,Default_Handler
.weak CAN2_RX0_IRQHandler
.thumb_set CAN2_RX0_IRQHandler,Default_Handler
.weak CAN2_RX1_IRQHandler
.thumb_set CAN2_RX1_IRQHandler,Default_Handler
.weak CAN2_SCE_IRQHandler
.thumb_set CAN2_SCE_IRQHandler,Default_Handler
.weak OTG_FS_IRQHandler
.thumb_set OTG_FS_IRQHandler,Default_Handler
.weak DMA2_Stream5_IRQHandler
.thumb_set DMA2_Stream5_IRQHandler,Default_Handler
.weak DMA2_Stream6_IRQHandler
.thumb_set DMA2_Stream6_IRQHandler,Default_Handler
.weak DMA2_Stream7_IRQHandler
.thumb_set DMA2_Stream7_IRQHandler,Default_Handler
.weak USART6_IRQHandler
.thumb_set USART6_IRQHandler,Default_Handler
.weak I2C3_EV_IRQHandler
.thumb_set I2C3_EV_IRQHandler,Default_Handler
.weak I2C3_ER_IRQHandler
.thumb_set I2C3_ER_IRQHandler,Default_Handler
.weak OTG_HS_EP1_OUT_IRQHandler
.thumb_set OTG_HS_EP1_OUT_IRQHandler,Default_Handler
.weak OTG_HS_EP1_IN_IRQHandler
.thumb_set OTG_HS_EP1_IN_IRQHandler,Default_Handler
.weak OTG_HS_WKUP_IRQHandler
.thumb_set OTG_HS_WKUP_IRQHandler,Default_Handler
.weak OTG_HS_IRQHandler
.thumb_set OTG_HS_IRQHandler,Default_Handler
.weak DCMI_IRQHandler
.thumb_set DCMI_IRQHandler,Default_Handler
.weak HASH_RNG_IRQHandler
.thumb_set HASH_RNG_IRQHandler,Default_Handler
.weak FPU_IRQHandler
.thumb_set FPU_IRQHandler,Default_Handler
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment