Commit 8a4665f4 by vielex

Add new file

parent d59263a3
Showing with 336 additions and 0 deletions
// os.c
// Runs on LM4F120/TM4C123/MSP432
// Lab 3 starter file.
// Daniel Valvano
// March 24, 2016
#include <stdint.h>
#include "os.h"
#include "CortexM.h"
#include "BSP.h"
// function definitions in osasm.s
void StartOS(void);
// void static runperiodicevents(void);
void static sleepCounter(void);
void (*PeriodUserTask1)(void);
void (*PeriodUserTask2)(void);
uint32_t period1, period2 = 0;
uint32_t periodicCounter1, periodicCounter2 = 0;
#define NUMTHREADS 6 // maximum number of threads
#define NUMPERIODIC 2 // maximum number of periodic threads
#define STACKSIZE 100 // number of 32-bit words in stack per thread
struct tcb{
int32_t *sp; // pointer to stack (valid for threads not running
struct tcb *next; // linked-list pointer
int32_t *block; // nonzero if blocked on this semaphore
int32_t sleep; // nonzero if this thread is sleeping
//*FILL THIS IN****
};
typedef struct tcb tcbType;
tcbType tcbs[NUMTHREADS];
tcbType *RunPt;
int32_t Stacks[NUMTHREADS][STACKSIZE];
// ******** OS_Init ************
// Initialize operating system, disable interrupts
// Initialize OS controlled I/O: periodic interrupt, bus clock as fast as possible
// Initialize OS global variables
// Inputs: none
// Outputs: none
void OS_Init(void){
DisableInterrupts();
BSP_Clock_InitFastest();// set processor clock to fastest speed
// perform any initializations needed
}
void SetInitialStack(int i){
// **Same as Lab 2****
tcbs[i].sp = &Stacks[i][STACKSIZE-16]; // thread stack pointer
Stacks[i][STACKSIZE-1] = 0x01000000; // thumb bit
Stacks[i][STACKSIZE-3] = 0x14141414; // R14
Stacks[i][STACKSIZE-4] = 0x12121212; // R12
Stacks[i][STACKSIZE-5] = 0x03030303; // R3
Stacks[i][STACKSIZE-6] = 0x02020202; // R2
Stacks[i][STACKSIZE-7] = 0x01010101; // R1
Stacks[i][STACKSIZE-8] = 0x00000000; // R0
Stacks[i][STACKSIZE-9] = 0x11111111; // R11
Stacks[i][STACKSIZE-10] = 0x10101010; // R10
Stacks[i][STACKSIZE-11] = 0x09090909; // R9
Stacks[i][STACKSIZE-12] = 0x08080808; // R8
Stacks[i][STACKSIZE-13] = 0x07070707; // R7
Stacks[i][STACKSIZE-14] = 0x06060606; // R6
Stacks[i][STACKSIZE-15] = 0x05050505; // R5
Stacks[i][STACKSIZE-16] = 0x04040404; // R4
}
//******** OS_AddThreads ***************
// Add six main threads to the scheduler
// Inputs: function pointers to six void/void main threads
// Outputs: 1 if successful, 0 if this thread can not be added
// This function will only be called once, after OS_Init and before OS_Launch
int OS_AddThreads(void(*thread0)(void),
void(*thread1)(void),
void(*thread2)(void),
void(*thread3)(void),
void(*thread4)(void),
void(*thread5)(void)){
// **similar to Lab 2. initialize as not blocked, not sleeping****
int32_t status;
status = StartCritical();
tcbs[0].next = &tcbs[1]; // 0 points to 1
tcbs[1].next = &tcbs[2]; // 1 points to 2
tcbs[2].next = &tcbs[3]; // 2 points to 3
tcbs[3].next = &tcbs[4]; // 3 points to 4
tcbs[4].next = &tcbs[5]; // 4 points to 5
tcbs[5].next = &tcbs[0]; // 5 points to 0
SetInitialStack(0); Stacks[0][STACKSIZE-2] = (int32_t)(thread0); // PC
SetInitialStack(1); Stacks[1][STACKSIZE-2] = (int32_t)(thread1); // PC
SetInitialStack(2); Stacks[2][STACKSIZE-2] = (int32_t)(thread2); // PC
SetInitialStack(3); Stacks[3][STACKSIZE-2] = (int32_t)(thread3); // PC
SetInitialStack(4); Stacks[4][STACKSIZE-2] = (int32_t)(thread4); // PC
SetInitialStack(5); Stacks[5][STACKSIZE-2] = (int32_t)(thread5); // PC
tcbs[0].block = 0; tcbs[0].sleep = 0; //No thread blocked or slepping
tcbs[1].block = 0; tcbs[1].sleep = 0;
tcbs[2].block = 0; tcbs[2].sleep = 0;
tcbs[3].block = 0; tcbs[3].sleep = 0;
tcbs[4].block = 0; tcbs[4].sleep = 0;
tcbs[5].block = 0; tcbs[5].sleep = 0;
RunPt = &tcbs[0]; // thread 0 will run first
EndCritical(status);
return 1; // successful
}
//******** OS_AddPeriodicEventThread ***************
// Add one background periodic event thread
// Typically this function receives the highest priority
// Inputs: pointer to a void/void event thread function
// period given in units of OS_Launch (Lab 3 this will be msec)
// Outputs: 1 if successful, 0 if this thread cannot be added
// It is assumed that the event threads will run to completion and return
// It is assumed the time to run these event threads is short compared to 1 msec
// These threads cannot spin, block, loop, sleep, or kill
// These threads can call OS_Signal
// In Lab 3 this will be called exactly twice
int OS_AddPeriodicEventThread(void(*thread)(void), uint32_t period){
// ****IMPLEMENT THIS****
static int32_t i = 0;
if(i == 0) {
PeriodUserTask1 = thread;
period1 = period;
i++;
}
if(i == 1) {
period2 = period;
PeriodUserTask2 = thread;
}
return 1;
}
/*void static runperiodicevents(void){
// ****IMPLEMENT THIS****
// **RUN PERIODIC THREADS, DECREMENT SLEEP COUNTERS
}*/
void sleepCounter() {
static int32_t periodicCounter1, periodicCounter2;
for(int i = 0; i<6; i++) {
if(tcbs[i].sleep)
tcbs[i].sleep--;
}
if(periodicCounter1 == 0) {
PeriodUserTask1();
periodicCounter1 = period1;
}
if(periodicCounter2 == 0) {
PeriodUserTask2();
periodicCounter2 = period2;
}
periodicCounter1--;
periodicCounter2--;
}
//******** OS_Launch ***************
// Start the scheduler, enable interrupts
// Inputs: number of clock cycles for each time slice
// Outputs: none (does not return)
// Errors: theTimeSlice must be less than 16,777,216
void OS_Launch(uint32_t theTimeSlice){
STCTRL = 0; // disable SysTick during setup
STCURRENT = 0; // any write to current clears it
SYSPRI3 =(SYSPRI3&0x00FFFFFF)|0xE0000000; // priority 7
STRELOAD = theTimeSlice - 1; // reload value
STCTRL = 0x00000007; // enable, core clock and interrupt arm
BSP_PeriodicTask_Init(&sleepCounter, 1000, 1);
BSP_PeriodicTask_Restart();
StartOS(); // start on the first task
}
// runs every ms
void Scheduler(void){ // every time slice
// ROUND ROBIN, skip blocked and sleeping threads
RunPt = RunPt->next; // Round Robin
while((RunPt->block) || (RunPt->sleep)){
RunPt = RunPt->next; // Moving forward because block or sleep
}
}
//******** OS_Suspend ***************
// Called by main thread to cooperatively suspend operation
// Inputs: none
// Outputs: none
// Will be run again depending on sleep/block status
void OS_Suspend(void){
STCURRENT = 0; // any write to current clears it
INTCTRL = 0x04000000; // trigger SysTick
// next thread gets a full time slice
}
// ******** OS_Sleep ************
// place this thread into a dormant state
// input: number of msec to sleep
// output: none
// OS_Sleep(0) implements cooperative multitasking
void OS_Sleep(uint32_t sleepTime){
// set sleep parameter in TCB
// suspend, stops running
RunPt->sleep = sleepTime;
OS_Suspend();
}
// ******** OS_InitSemaphore ************
// Initialize counting semaphore
// Inputs: pointer to a semaphore
// initial value of semaphore
// Outputs: none
void OS_InitSemaphore(int32_t *semaPt, int32_t value){
//***IMPLEMENT THIS***
*semaPt = value;
}
// ******** OS_Wait ************
// Decrement semaphore and block if less than zero
// Lab2 spinlock (does not suspend while spinning)
// Lab3 block if less than zero
// Inputs: pointer to a counting semaphore
// Outputs: none
void OS_Wait(int32_t *semaPt){
//***IMPLEMENT THIS***
DisableInterrupts();
(*semaPt) = (*semaPt) - 1;
if((*semaPt)<0){
RunPt->block = semaPt;
EnableInterrupts();
OS_Suspend();
}
EnableInterrupts();
}
// ******** OS_Signal ************
// Increment semaphore
// Lab2 spinlock
// Lab3 wakeup blocked thread if appropriate
// Inputs: pointer to a counting semaphore
// Outputs: none
void OS_Signal(int32_t *semaPt){
//***IMPLEMENT THIS***
tcbType *pt;
DisableInterrupts();
(*semaPt) = (*semaPt) + 1;
if((*semaPt)<=0){
pt = RunPt->next;
while(pt->block != semaPt){
pt = pt->next;
}
pt->block = 0;
}
EnableInterrupts();
}
#define FSIZE 10 // can be any size
uint32_t volatile *PutPt; // index of where to put next
uint32_t volatile *GetPt; // index of where to get next
uint32_t static Fifo[FSIZE];
int32_t CurrentSize;// 0 means FIFO empty, FSIZE means full
int32_t RoomLeft; // 0 means FIFO full
int32_t FIFOmutex; // exclusive access to FIFO
uint32_t LostData;
// ******** OS_FIFO_Init ************
// Initialize FIFO.
// One event thread producer, one main thread consumer
// Inputs: none
// Outputs: none
void OS_FIFO_Init(void){
//***IMPLEMENT THIS***
PutPt = GetPt = &Fifo[0]; // Empty
OS_InitSemaphore(&CurrentSize, 0); // Current amount of data in FIFO
OS_InitSemaphore(&FIFOmutex, 1); // Protects pointers towards multiple access
LostData=0;
}
// ******** OS_FIFO_Put ************
// Put an entry in the FIFO.
// Exactly one event thread puts,
// do not block or spin if full
// Inputs: data to be stored
// Outputs: 0 if successful, -1 if the FIFO is full
int OS_FIFO_Put(uint32_t data){
//***IMPLEMENT THIS***
if(CurrentSize == FSIZE){
LostData++; // error
return -1;
}
*(PutPt) = data; // Put
PutPt++; // place for next
if(PutPt == &Fifo[FSIZE]){
PutPt = &Fifo[0]; // wrap
}
OS_Signal(&CurrentSize);
return 0;
}
// ******** OS_FIFO_Get ************
// Get an entry from the FIFO.
// Exactly one main thread get,
// do block if empty
// Inputs: none
// Outputs: data retrieved
uint32_t OS_FIFO_Get(void){
uint32_t data;
OS_Wait(&CurrentSize); // block if empty
OS_Wait(&FIFOmutex);
data = *(GetPt); // get data
GetPt++; // points to next data to get
if(GetPt == &Fifo[FSIZE]){
GetPt = &Fifo[0]; // wrap
}
OS_Signal(&FIFOmutex);
return data;
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment