Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
rufort
/
IAS0360_lab_excercises_2024
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
4540f6da
authored
Sep 27, 2024
by
Nazrul_being
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added lab 3
parent
c32b1643
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
130 additions
and
0 deletions
lab_3/Makefile
lab_3/lab3.cpp
lab_3/Makefile
0 → 100644
View file @
4540f6da
BIN
=
lab3
CC
=
g++
SRC
=
lab3.cpp ../lib/src/NeuralNetwork.cpp
all
:
$(BIN)
$(BIN)
:
$(SRC)
$(CC)
-o
$(BIN)
$(SRC)
run
:
$(BIN)
./
$(BIN)
\ No newline at end of file
lab_3/lab3.cpp
0 → 100644
View file @
4540f6da
#include <iostream>
#include <vector>
#include "../lib/includes/NeuralNetwork.h"
#define NUM_OF_FEATURES 3 // Number of input features (e.g., temperature, humidity, air quality)
#define NUM_OF_HIDDEN_NODES 3 // Number of neurons in the hidden layer
#define NUM_OF_OUTPUT_NODES 1 // Number of output nodes (e.g., predicted class)
double
learning_rate
=
0.01
;
// Learning rate for updating weights (not used directly in this example)
// Intermediate outputs and storage for the hidden layer
std
::
vector
<
double
>
hiddenLayerOutput
(
NUM_OF_HIDDEN_NODES
);
// Output of the hidden layer (for each example)
std
::
vector
<
double
>
hiddenLayerBias
=
{
0
,
0
,
0
};
// Initialize biases for the hidden layer neurons
std
::
vector
<
double
>
hiddenLayerWeightedSum
(
NUM_OF_HIDDEN_NODES
);
// Weighted sum (z1) before applying activation function
// Weights from input layer to hidden layer
std
::
vector
<
std
::
vector
<
double
>>
inputToHiddenWeights
=
{
{
0.25
,
0.5
,
0.05
},
// Weights for hidden neuron 1
{
0.8
,
0.82
,
0.3
},
// Weights for hidden neuron 2
{
0.5
,
0.45
,
0.19
}
// Weights for hidden neuron 3
};
// Intermediate outputs and storage for the output layer
std
::
vector
<
double
>
outputLayerBias
=
{
0
};
// Initialize bias for the output neuron
std
::
vector
<
double
>
outputLayerWeightedSum
(
NUM_OF_OUTPUT_NODES
);
// Weighted sum (z2) before applying activation function
// Weights from hidden layer to output layer
std
::
vector
<
std
::
vector
<
double
>>
hiddenToOutputWeights
=
{
{
0.48
,
0.73
,
0.03
}
// Weights for the output neuron
};
// Predicted values after applying the sigmoid activation function
std
::
vector
<
double
>
predictedOutput
(
NUM_OF_OUTPUT_NODES
);
// yhat (predicted values)
// Training data (normalized input features and expected output)
std
::
vector
<
std
::
vector
<
double
>>
normalizedInput
(
2
,
std
::
vector
<
double
>
(
NUM_OF_FEATURES
));
// Normalized input features for training
std
::
vector
<
std
::
vector
<
double
>>
expectedOutput
=
{{
1
}};
// Expected output (labels) for each training example
// Task 1: Perform a forward pass through the network
void
task1
()
{
NeuralNetwork
nn
;
// Raw input features before normalization
std
::
vector
<
std
::
vector
<
double
>>
rawInput
=
{
{
23.0
,
40.0
,
100.0
},
// Example 1: temp, hum, air_q
{
22.0
,
39.0
,
101.0
}
// Example 2
};
// Normalize the raw input data
nn
.
normalizeData2D
(
rawInput
,
normalizedInput
);
std
::
cout
<<
"Normalized training input:
\n
"
;
nn
.
printMatrix
(
normalizedInput
.
size
(),
NUM_OF_FEATURES
,
normalizedInput
);
// Step 1: Calculate the weighted sum (z1) for the hidden layer
std
::
vector
<
double
>
flattenedInputToHiddenWeights
;
for
(
const
auto
&
row
:
inputToHiddenWeights
)
{
flattenedInputToHiddenWeights
.
insert
(
flattenedInputToHiddenWeights
.
end
(),
row
.
begin
(),
row
.
end
());
}
nn
.
multipleInputMultipleOutput
(
normalizedInput
[
0
],
flattenedInputToHiddenWeights
,
hiddenLayerBias
,
hiddenLayerWeightedSum
,
NUM_OF_FEATURES
,
NUM_OF_HIDDEN_NODES
);
std
::
cout
<<
"Output vector (z1) for hidden layer:
\n
"
;
for
(
double
val
:
hiddenLayerWeightedSum
)
{
std
::
cout
<<
val
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
// Step 2: Apply ReLU activation to the hidden layer's weighted sum
nn
.
vectorReLU
(
hiddenLayerWeightedSum
,
hiddenLayerOutput
);
// Step 3: Calculate the weighted sum (z2) for the output layer
std
::
vector
<
double
>
flattenedHiddenToOutputWeights
;
for
(
const
auto
&
row
:
hiddenToOutputWeights
)
{
flattenedHiddenToOutputWeights
.
insert
(
flattenedHiddenToOutputWeights
.
end
(),
row
.
begin
(),
row
.
end
());
}
nn
.
multipleInputMultipleOutput
(
hiddenLayerOutput
,
flattenedHiddenToOutputWeights
,
outputLayerBias
,
outputLayerWeightedSum
,
NUM_OF_HIDDEN_NODES
,
NUM_OF_OUTPUT_NODES
);
std
::
cout
<<
"Output vector (z2) for output layer:
\n
"
;
std
::
cout
<<
outputLayerWeightedSum
[
0
]
<<
"
\n
"
;
// Step 4: Apply Sigmoid activation to the output layer's weighted sum
nn
.
vectorSigmoid
(
outputLayerWeightedSum
,
predictedOutput
);
std
::
cout
<<
"Predicted output (yhat) after Sigmoid activation:
\n
"
;
std
::
cout
<<
predictedOutput
[
0
]
<<
"
\n
"
;
// Step 5: Compute the cost (logistic regression cost function)
double
cost
=
nn
.
computeCost
(
1
,
{
predictedOutput
},
expectedOutput
);
std
::
cout
<<
"Cost: "
<<
cost
<<
"
\n
"
;
}
// Task 2: Save and load the network's state
void
task2
()
{
NeuralNetwork
nn
;
const
std
::
string
filename
=
"network_save.txt"
;
// Save the network to a file
nn
.
saveNetwork
(
filename
,
NUM_OF_FEATURES
,
NUM_OF_HIDDEN_NODES
,
NUM_OF_OUTPUT_NODES
,
inputToHiddenWeights
,
hiddenLayerBias
,
hiddenToOutputWeights
,
outputLayerBias
);
// Clear the weights and biases to simulate loading from a file
for
(
auto
&
row
:
inputToHiddenWeights
)
{
std
::
fill
(
row
.
begin
(),
row
.
end
(),
0.0
);
}
std
::
fill
(
hiddenLayerBias
.
begin
(),
hiddenLayerBias
.
end
(),
0.0
);
for
(
auto
&
row
:
hiddenToOutputWeights
)
{
std
::
fill
(
row
.
begin
(),
row
.
end
(),
0.0
);
}
std
::
fill
(
outputLayerBias
.
begin
(),
outputLayerBias
.
end
(),
0.0
);
std
::
cout
<<
"Network weights and biases cleared to zero.
\n
"
;
// Load the network from the file
nn
.
loadNetwork
(
filename
,
NUM_OF_FEATURES
,
NUM_OF_HIDDEN_NODES
,
NUM_OF_OUTPUT_NODES
,
inputToHiddenWeights
,
hiddenLayerBias
,
hiddenToOutputWeights
,
outputLayerBias
);
// Execute the network after loading the saved state
task1
();
}
int
main
()
{
task1
();
task2
();
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment